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Topos Perspective on the Kochen—Specker
Theorem: IV. Interval Valuations
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We extend the topos-theoretic treatment given in previous papers (Butterfield, J. and
Isham, C. J. (1999)International Journal of Theoretical Physic38, 827-859;
Hamilton, J., Butterfield, J., and Isham, C. J. (2006)ernational Journal of Theo-
retical Physics39, 1413-1436; Isham, C. J. and Butterfield, J. (199&ernational
Journal of Theoretical Physic87, 2669-2733) of assigning values to quantities in
quantum theory. In those papers, the main idea was to assign a sieve as a partial and
contextual truth value to a proposition that the value of a quantity lies in a certain
set A C R. Here we relate such sieve-valued valuations to valuations that assign to
guantities subsets, rather than single elements, of their spectra (we call these “interval”
valuations). There are two main results. First, there is a natural correspondence between
these two kinds of valuation, which uses the notion of a state’s support for a quantity
(Section 3). Second, if one starts with a more general notion of interval valuation, one
sees that our interval valuations based on the notion of support (and correspondingly,
our sieve-valued valuations) are a simple way to secure certain natural properties of
valuations, such as monotonicity (Section 4).

KEY WORDS: Kochen—Specker theorem; topos theory; valuations; supports; quan-
tum logic.

1. INTRODUCTION

In three previous papers (Butterfield and Isham, 1999; Hamdtah, 2000;
Isham and Butterfield, 1998) we have developed a topos-theoretic perspective on
the assignment of values to quantities in quantum theory. In particular, it was
shown that the Kochen—Specker theorem (Kochen and Specker, 1967) (which
states the impossibility of assigning to each bounded self-adjoint operator on a
Hilbert space of dimension greater than 2, a real number such that functional re-
lations are preserved) is equivalent to the nonexistence of any global elements of
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a certain presheaf, called the “spectral presheaf.” This presheaf is defined in
closely analogous ways on the categ@hof bounded self-adjoint operators on

a Hilbert spacé{ (cf. Butterfield and Isham, 1999; Isham and Butterfield, 1998),
and on the category of commutative von Neumann subalgebras of the algebra
of bounded operators dH (cf. Hamiltonet al,, 2000)#

A key result of Butterfield and Isham (1999), Hamiltehal. (2000), and
Isham and Butterfield (1998) is that, notwithstanding the Kochen—Specker theo-
rem, itis possible to define “generalized valuations” on all quantities, in which
any proposition ‘A € A” (read as saying that the value of the physical quan-
tity A lies in the Borel set of real numbers) is assigned, in effect, a set of
quantities that are coarse-grainings (functionsjpofo be precise, such a propo-
sition is assigned as a truth value a certain set of morphisms in the category
O (or V), this set being required to have the structure sieve These gener-
alized valuations can be motivated from various different perspectives (cf. also
Butterfield, 2001). In particular, they obey a condition analogous td-thRC
condition of the Kochen—Specker theorem, which states that assigned values
preserve functional relations between operators, and certain other natural con-
ditions too. Furthermore, each (pure or mixed) quantum state defines such a
valuation. In Section 2 we will briefly recall the details of these proposals and
results.

In this paper, we shall extend this treatment in two main ways (Sections 3
and 4 respectively). Both involve the relation between sieve-valued valuations and
valuations that assign to a quantity not an individual member of its spectrum,
but rather some subset of it (which we call “interval valuations”). Though this idea
seems at first sight very different from our generalized valuations—that assign
sieves to propositionsA € A"—the two types of valuations turn out to be closely
related. In fact, there is a natural correspondence between them that uses the notion
of the supportof a state for a quantity (Section 3). This correspondence is best
expressed for the case bfthan for O since, by using von Neumann algebras
as the base category, various measure-theoretic technicalities can be immediately
dealt with. However, we shall also discuss the cas@ophs it is heuristically
valuable.

In Section 4, we describe how if one starts with a yet more general notion of an
interval valuation (i.e., one that does not appeal to the notion of support), one sees
that our interval valuations based on the notion of support (and correspondingly,
our sieve-valued valuations) are a simple way to secure certain natural properties
of valuations, such as monotonicity.

4There is also a closely analogous presheaf—the dual preBhetfat is defined on the categoyy
of Boolean subalgebras of the lattic€) of projectors orfH{; and the Kochen—Specker theorem
is also equivalent to the nonexistence of any global elemeriis(of. Butterfield and Isham, 1999;
Isham and Butterfield , 1998). But we shall not discugdurther in this paper.
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2. REVIEW OF OUR FRAMEWORK
2.1. The Categorie® and V

We will first summarize the definitions given in the previous papers
(Butterfield and Isham, 1999; Hamiltat al., 2000; Isham and Butterfield, 1998),
of the categorie® andV that are defined in terms of the operators on a Hilbert
space, and over which various presheaves may be usefully constructed.

The objects of the categor§ are defined to be the bounded self-adjoint
operators on the Hilbert spagéof some quantum system. A morphidia : B—

A’is defined to exist iB = f(A) for some Borel functionf . On the other hand,
the objectsv of the category are defined to be the commutative von Neumann
subalgebras of the algebB{7) of bounded operators di. The morphisms in

V are the subset inclusions—so#f < Vi, we have a morphistin,y, : Vo — V.
Thus the objects in the categovyform a poset.

The category gives the most satisfactory description of the ordering struc-
ture of operators. Some reasons for this were discussed in Section 2.1 of Hamilton
etal.(2000). In particular, each von Neumann algebra contains the spectral projec-
tors of all its self-adjoint members; so in a seMssubsumes bot® andW (the
category of Boolean subalgebras of the latii¢®()). More important in this paper
is the fact that inV issues about measure theory and spectral theory are easier to
treat than they are i@; though we will for heuristic reasons keépin play.

2.2. The Spectral Presheaf oi© and V

The spectral preshea over O was introduced in Isham and Butterfield
(1998). Itassigns to each objefttn Oits spectrumr(A) as a self-adjoint operator:
thusE(A) = o(A) C R. And it assigns to each morphisfip : B — A (so that
B = f(A)), the corresponding map from(A) to o (B) : =(fo) : o(A = o(B),
with A € o(A) > (1) € o(B).

We now define the corresponding presheaf ovetWe recall (see, e.g.,
Kadison and Ringrose (1983)) that the spectra(V) of a commutative von
Neumann algebr¥ is the set of all multiplicative linear functionats: V — C;
these are also the pure statesvofSuch a functional assigns a complex number
«(A) to each operatoA € V, such that (A) K(B) = K(AB) If Ais self-adjoint
thenk (A) is real and belongs to the spectrarpA) of A.

Furthermoreg (V) is a compact Hausdorff space when it is equipped with
the weaks topology, which is defined to be the weakest topology such that, for
all A € V, the mapA : o(V) — C defined by

Alk) = «(A), (2.1)

is continuous. The functioA defined in Eq. (2.1) is known as ti@&elfand trans-
formof A, and the spectral theorem for commutative von Neumann algebras asserts
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thatthe mapA — Ais an isomorphism of with the algebra& (o (V)) of complex-
valued, continuous functions an(V). The spectral presheaf is then defined as
follows.

Definition 2.1. The spectral presheaf oveét is the contravariant functok :
V — Set defined as follows:

e OnobjectsX(V) := o(V),wheres (V) is the spectrum of the commutative
von Neumann algebrd, i.e. the set of all multiplicative linear functionals
k:V —C.

e On morphisms: Ifiy,y, : Vo — Vi, so thatV, € Vi, then Z(i,y,) :

o (V1) = o(Vy) is defined byX (iv,v, )(«x) := «|v,, wherex|y, denotes the
restriction of the functionat : V; — C to the subalgebrs, of V.

When restricted to the self-adjoint elements\of a multiplicative linear
functionalx satisfies all the conditions ofwaluation namely:

1. The (real) value (A) of A must belong to the spectrum 8f
2. The functional composition principl&(UNC)

k(B) = f(k(A)) (2.2)
holds for any self-adjoint operatofs B € V such thatB = f (A).

It follows that the Kochen—Specker theorem can be expressed as the statement that
(for dim H > 2) the presheak overV has no global elements. Indeed, a global
element ofX over) would assign a multiplicative linear functional: V — C

to each commutative von Neumann algebfan V in such a way that these
functionals “match up” as they are mapped down the presheatf: i.e., the functional
« onV would be obtained as the restriction¥oof the functionalk; : V; — C
foranyV; 2 V. So such a global element would yield a global valuation, obeying
FUNC Eq. (2.2), on all the self-adjoint operators: a valuation that is forbidden by
the Kochen—Specker theorem.

2.3. The Coarse-Graining Presheaf oi© and vV

Our chief concern is witlgeneralizedvaluations, which areot excluded
by the Kochen—Specker theorem. These are given by first introducing another
presheaf—theoarse-graining—presheaf, which gives us a structured collection
of propositions about the values of quantities. We summarize the ideas behind the
coarse-graining presheaf in this subsection and the next. Then we use the topos-
theoretic idea of the subobject classifier to assign sieves as partial, and contextual,
truth values to these propositions (Section 2.5).

We begin by representing the propositioA & A"—that the value of the
physical quantityA lies in the Borel sei\ C o(A) c R—by the corresponding
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spectral projector forA, E[A € A] (as we will see below, and as discussed in
detail in Hamiltoret al. (2000), Section 3, this last statement needs to be qualified
as regards’). The coarse-graining presheaf is then defined so as to reflect the
behavior of these propositions as they are mapped between the different stages
of the base category. Specifically, the coarse-graining presheaf(®isrde-

fined ((Isham and Butterfield, 1998), Definition 4.3) as the following contravariant
functorG : O — Set:

e Onobjectsin) : G(A) := W,, whereW, is the spectral algebra & (i.e.,
the set of all spectral projectors fr&);

e On morphisms N0 : If fo : B— A (i.e., B = f(A)), thenG(fp):
Wa — Wg is defined as

G(fo)(E[A € A]) := E[f(A) € f(A)]. (2.3)

Note that the action of this presheaf coarsens propositions (and their associated
projectors) in the sense that, in the partial-ordering of the lattice of projectors,
E[f(A) € f(A)] = E[A € A], and where the strict inequality arises whéris
not injective.

One subtlety is that foA a Borel subset oefr(A), f(A) need not be Borel.
This is resolved in Isham and Butterfield (1998), Theorem (4.1), by using the fact
that if A has a purely discrete spectrum (so that, in particflés) is Borel) then

E[f(A) € f(A)] =inf(Q e Wi CWa | E[Ac Al < Q)  (24)

where the infimum of projectors is taken in the (complete) lattice structure of all
projectors orf{. This motivated the use in Isham and Butterfield (1998) of Eq. (2.4)
to definethe coarse-graining operation for a general self-adjoint opefatbe.,
the projection operator denoted By f (A) € f (A)]is definecusing the right hand
side of Eq. (2.4).

This infimum construction is used again in our definitioGadver). Specif-
ically, we define:

Definition 2.2. The coarse-graining presheaf ovéis the contravariant functor
G :V — Set defined as follows:

e On objectsG(V) is the lattice£(V) of projection operators in the com-
mutative von Neumann algeba

e On morphisms: ifiy,y, : Vo — Vi thenG(iv,y,) : £L(V1) = L(V>) is the
coarse-graining operation defined Bre £(V;) by

Glivw)(P) :=inf{Q € L(Vo) | P < iy, (D)) (2.5)

where the infimum exists becaugéV,) is complete.
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The spectral and coarse-graining presheaves will play a central role in the
subsequent discussion. First, however, we recall that the interpretation of the
propositions ‘A € A” is more subtle for the base categdsythan forO (as dis-
cussed in Butterfield and Isham (1999) and Isham and Butterfield (1998)). For we
interpret a projectoP € £(V) as a proposition about the entire stageFormally,
we can make this precise in terms of the spectrum oétpebra V. That is to say,
we note that:

e Any projectorP L(V) corresponds notonly to a subset of the spectrum of
individual operatorsA eV (whereP € WasoP = E[A € A] for some
A C o(A)), but also to a subset of the spectrum of the whole algebra
V, namely, those multiplicative linear functionats: V — C such that
«(P) = 1. It will be convenient in Section 2.4 et seq. to have a notation for
this subset, so we defing(P) := {x € o(V) : V — C | «(P) = 1}.

¢ Coarse-graining respects this interpretation in the sense that if we interpret
Pe L(V1) as a proposition about the spectrum of the algelrathen
the coarse-graining d® to someV, C Vi, given by infQ € £(V,) | P <
|V2V1(Q)} is a member of2(V,), and so can be interpreted as a proposition
about the spectrum of the algeb/a

This treatment of propositions as concerning the spectra of commutative von
Neumann algebras, rather than the spectra of individual operators, amounts to
the semantic identification of all propositions in the algebra corresponding to the
same mathematical projector. Thus when we speak of a proposiianA” at
some stag®/, with A € V, we really mean the corresponding proposition about
the spectrum of the whole algeb¥adefined using the projectdt[A € A]. In
terms of operators, the propositiolA‘e A” is augmentedit can be thought
of as the family of propositionsB € Ag” about operatorsB € V such that
the projectorE[A € A] belongs to the spectral algebra Bf and E[A € A] =
E[B € Ag].

2.4. G as the Power Object o

In any topos, any objecK has an associated “power objed®’X := QX,
which is the topos analogue of the power set of a set. Accordingly, in a topos of
presheaves, any presheéfhas a “power presheafP(X). This presheal(X)
assigns to each stage of the base category the power $&{X(A)) of the set
X(A) assigned byX; and it assigns to each morphism: B — A in the base-
category, the set-function from(X(A)) to P(X(B)) induced in the obvious way
from X(f) : X(A) — X(B). That is to say,P(X)(f): P(X(A)) — P(X(B)) is
defined by

PX)(f) 1 A € P(X(A)) — (X(f))(A) € P(X(B)). (2.6)
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But one can also consider more restricted power presheaves, whose assign-
ment at a stagé contains only certain subsets of the X¢A). Indeed, in Isham
and Butterfield (1998), Section 4.2.3, it was noted that the coarse-graining presheaf
G over O was essentially the same as the presiBafover O, which is defined
as assigning to each in O the Borel subsets of the spectrumAfThe presheaf
BX on O was essentially the Borel power objectdf containing those subob-
jects of X which are formed of Borel sets of spectral values, with a projector
E[A € A] € G(A) corresponding to the Borel subsetc £ (A).

This connection between projectors and subsets of spectra—i.e., the fact that
G is essentially the same as a restricted power presheafedlso holds in the
case ofV, as follows.

A projection operatoP € V has as its Gelfand transforfhthe characteristic
function of a subset of the spectrum\éf namely the seV/ ( P) of multiplicative
linear functionalsc onV such thai(P) = 1; in other wordsP = Xv(p)- This set
is both closed and openl6per) in the compact Hausdorff topology 6{V). Con-
versely, each clopen subsetofV) corresponds to a projection opera®whose
representative functioR ono (V) is the characteristic function of this subset.

So in analogy withBX on O, we define a similar presheaf dn viz. the
clopen power object of, which we will denote Cl&:

e On objects: Cl&(V) is defined to be the set of clopen subsets of the
spectrumo (V) of the algebra/. Each such clopen set is the 8&P) of
multiplicative linear functionalg such thatc(P) = 1 for some projector
PeV.SoClo(V) ={V(P) | P € L(V)}.

e On morphisms: foW, C Vi, we define in accordance with Eq. (2.6)

CIoZ (iv,v, ) (Vi(P)) 1= ClOZ (iv,v, ) (fk € o (V1) | k(P) = 1})
= {A € 6 (V2)|A = k|y, for somex € Vi(P)}
(2.7)

The right hand side of Eq. (2.7) is clearly a subseho€ o (V2) | AM(G(iv,v,)
(P)) = 1}. But the converse inclusion also holds: i.e., ang o(V5) such that
AM(G(iv,v,)(P)) = 1is the restriction td/, of somex € o (V4) such thak (P) = 1.
This follows from Theorem 4.3.13 (p. 266) of Kadison and Ringrose (1988js
theorem concerns extending states from a subspac€tfadgebra to the whole
C*-algebra. But using the fact that the set of pure states of a commuGitive
algebra is its spectrum, the theorem, especially part (iv), impliesitiat (V)
can be extended ta@e o (V4), with « chosen so that(P) = cfor anyc such that:

¢ > supA(E) | E is a projector inv, andE < P} (2.8)
¢ <inf{A(E) | E is a projector inv, andP < E} (2.9)

5We thank Hans Halvorson for this reference.
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For our case o€ = 1, the first constraint Eq. (2.8) is trivial. And the infimum in
the second constraint, Eq. (2.9), is 1; for the fact ti&(i,y,)(P)) < E for all
E € V, such thatP < E implies thatx(é) = 1for all E € V, such thatP < E.
SoA has an extension such thatc(ls) =1.
This result, thafi € o(V2) | A = |y, for somex € Vi(P)} = {% € (Vo) |
MG (iv,v,)(P)) = 1}, implies thatG and Cla are isomorphic in the topos of
presheaves oilY. Here isomorphism means as usual that: (i) there is a natural
transformatiorN from G to Clox, i.e., a family of mapdNy : G(V) — Clox(V)
for each stag®/ in V such that the diagram faf, C V;:
Clox(Vvi) "% Clox(V,)
Th, Th, (2.10)
G(v))  Slaw)  G(Vy)

commutes; and (iiN is invertible.

Such a natural transformation is provided BN : P € G — V(P) €
CloX (V). With this definition ofN, the requirement that the diagram in (2.10)
commutes is

VA(P)lv, = Va[G(ivov, ) (P)] (2.11)

which is just the result thah € o(V2) | 2 = «|y, for somex € Vi(P)} = {r €
o (Vo) | A(G(iv,y,)(P)) = 1}. This natural transformatioN is invertible since any
clopen set Clox(V) is of the formV (P) for a unique projectoP € G(V).

To sum up, we can think @b onV as being the clopen power object®fon
V. This isomorphism will be important in Section 3.

2.5. Sieve-Valued Generalized Valuations

We now describe how to use the topos-theoretic idea of a subobject classifier
to assign sieves as partial and contextual truth values to the propositions provided
by the coarse-graining presheaf (propositions thatVfas base category, are
“augmented” in the sense discussed at the end of Section 2.3).

As mentioned in Section 1, thesivevalued valuations have certain prop-
erties which strongly suggest that they are appropriate generalizations of the usual
idea of a valuation. In particular, they satisfy a functional composition principle
analogous to Eq. (2.2). Furthermore, these valuations can be motivated from vari-
ous different perspectives, discussed in Butterfield (2001), Butterfield and Isham
(1999), and Isham and Butterfield (1998). The main motivation, which applies
equally to eitheiO or V as base category, lies in the facts that:

1. For any base-gategor&,say, the subobject classifi€l in the topos of
presheaves Set is the presheaf that (i) assigns to eaklin C the set
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Q(A) of all sieves orA, where a sieve oA is a set of morphisms i@l with
codomainA that is “closed under composition,” i.e.¥fis sieve onA and
f : B — Ais a morphism inS, then for anyg : C — B, the composite
fog:C— Aisin S; and (ii) assigns to each morphisi: B — A
in C, the pullback map on sieve3(f) : Q(A) — Q(B); (cf. Isham and
Butterfield (1998), Appendix).
We note that the base-category of most interest fobuss a poset;
and since in a poset there is at most one morphism between objects, sieves
can be identified with lower sets in the poset. Thusigrnihe subobject
classifierQ2 is as follows:
® OnobjectsQ(V) is the set of sieves i onV. We recall thaf2(V) has
(i) a minimal element, the empty sieve, & @, and (ii) a maximal ele-
ment, the principal sieve, trye= |y (= {iyw : V' = V |V C V} =
{(V'|V' CV}

e OnmorphismsQ2(iv,v,) : Q(Vi) — Q(V,)isthe pull-back of the sieves
in (V1) alongiv,y, defined by:

Qivv,)(S) =13,1,(9)
= {iV3V2 . V3 g V2 | iV2V1 © iV3V2 € S} (212)
={VzC V2| V3¢€ 8 (2.13)

for all sievesS € Q(V3).

2. In any topos of presheaves $&tmorphisms from an arbitrary presheaf
X to the subobject classifi&2 generalize the characteristic functiops
in set theory that map an arbitrary s¢tto the two classical truth values
{0, 1}. In particular, just as the characteristic functigp : X — {0, 1}
for a given subseK € X encodes the answers to the questions for each
X € X, “x € K?,” so also the morphismyk : X —  for a given sub-
object (subpresheak) of X encodes the answers to the questions for each
stageA in the base-category, and eacke X(A), “at what stage does a
‘descendant’ ok enterK?.”

Thus the sieves can be considered as generalized—more precisely,

partial and contextual—truth values.

The actual definition of a sieve-valued generalized valuatiol’ ias fol-
lows. (The definition or0 can be obtainethutatis mutandi3

Definition 2.3. A sieve-valued generalized valuation on the cate@birya quan-
tumtheoryis acollectionof mapg : £(V) — Q(V), oneforeach “stage of truth”



622 Butterfield and Isham

V in the category’, with the following properties:
(i) Functional composition:
ForanyP € £(V) and anyV’ C V, so thafiyy : V' — V, we have
w(Glivv (P)) = i (v (P)) (2.14)
whereiy;,, is the pull-back of the sieves #(V) alongiy. defined by

Qvv)(9) =14y (9 = {iviv 1 V" = V' [iyy oy € S
(2.15)
for all sievesS € (V).
(ii) Null proposition condition:

w(0) = Oy (2.16)
(iii) Monotonicity:
If P, eL(v) with P<Q, then w(P)<w(Q). (2.17)

We may wish to supplement this list with:
(iv) Exclusivity:

IfP,QeL(v) with PO=0 and w/(P)=true,,
thenwy (Q) < true, (2.18)

and
(v) Unit proposition condition:

w (1) = truey. (2.19)

Note that in writing Eq. (2.14), we have employed Definition 2.2 to specify
the coarse-graining operation in terms of an infimum of projectors, as motivated
by Theorem 4.1 of Isham and Butterfield (1998).

The topos interpretation of these generalized valuations remains as discussed
in Section 4.2 of Isham and Butterfield (1998) and Section 4 of Butterfield and
Isham (1999). Adapting the results and discussion to the catégome have in
particular the result that because of tRENC condition, Eq. (2.14), the maps
Ny : L(V) — Q(V) defined at each stagé by:

Ny (P) = vy (P) (2.20)

define a natural transformatidi’ from G to £2. Sincef is the subobject-classifier
of the topos of presheaves, 8&f these natural transformations are in one-to-one
correspondence with subobjects®f so that each generalized valuation defines
a subobject of5. We will pursue this topic in more detail in Section 3.
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2.6. Sieve-Valued Valuations Associated with Quantum States

We recall (e.g., (Isham and Butterfield, 1998), Definition 4.5) that each quan-
tum statep defines a sieve-valued generalized valuatio@an a natural way by

V(A€ A):={fo:B— A| ProbB € f(A); p) =1}
={fo:B— A| tr(pE[B € f(A)]) = 1}. (2.21)

Thus the generalized valuation associates to the proposifion A” at stageA

all arrows in© with codomainA along which the projector corresponding to

the proposition coarse-grains to a projector which is “true” in the usual sense
of having a Born-rule probability equal to 1, which in our framework corre-
sponds to the “totally true” truth value, the principal sieyg at stageB. This
construction is easily seen to be a sieve, and satisfies conditions analogous to
Egs. (2.14)—(2.19) for a generalized valuationbfflsham and Butterfield, 1998),
Section 4.4).

We also recall that there is a one-parameter family of extensions of these
valuations, defined by relaxing the condition that the proposition coarse-grains
along arrows in the sieve to a “totally true” projector. That is to say, we can define
the sieve

V(A€ A):={fo:B— A|ProbB e f(A);p)>r}
={fo:B— A|tr(pE[B e f(A)]) >r} (2.22)

where the propositionA € A” is only required to coarse-grain to a projector that
is true with some probability greater thaywhere 05 <r < 1.

Furthermore, if one drops the exclusivity condition, one can allow probabil-
ities less than 0.5,i.e.€r < 0.5.

Similarly, each quantum stafe defines a sieve-valued generalized valua-
tion onV in a natural way. Recall from Section 2.3 that we interpret a projector
P e £(V) as an “augmented” proposition about the spectrum of the commutative
subalgebra/, rather than about the value of just one operator. Thus we define a
sieve-valued generalized valuation associated with a quantumpsaatéollows:

Definition 2.4. The sieve-valued valuatiotrﬁ1 of a projectorP € V; associated
with a quantum statg is defined by:

v\pll(IS) = {iV2V1 Vo= Vg | IO[G(IVle)(ﬁ)] = 1} (223)

This assigns as the truth-value at stageof a projectorP € £(V1), a sieve

on V; containing (morphisms t&; from) all stagesV, at which P is coarse-
grained to a projector which is “totally true” in the usual sense of having Born-rule
probability 1.
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One readily verifies that Eq. (2.23) defines a generalized valuation in the sense
of Definition 2.3. (The verification is the sanmeutatis mutandisas for generalized
valuations or0©, given in Section 4.4 of Isham and Butterfield (1998)).

Again, we can obtain a one-parameter family of such valuations by introduc-
ing a probabilityr :

v (P) 1= {ivav, 1 V2 = Vi | p[G(ivow)(P)] = 1. (2.24)

2.7. Interval Valuations

The sieve-valued generalized valuationgdand) discussed in Sections 2.5
and 2.6 (and their analogues W, discussed in Butterfield and Isham (1999) and
Isham and Butterfield (1998)) are one way of assigning a generalized truth value
to propositions in a way that is not prevented by the Kochen—Specker theorem. We
now turn to relating these to another notion of “generalized valuation,” which we
call “interval valuations” since the intuitive idea is to assign some interval of real
numbers to each operator. Note that here “interval” is used loosely: it means just
some (Borel) subset @, not necessarily a connected subset; and more generally,
it means just some (Borel) subset of the spectrum one is concerned with (at a given
stage of the base-category).

In Section 4 of Hamiltoret al. (2000), we showed how this intuitive idea can
be developed in various ways, even for a single base-category. That discussion
focussed orV, and described how a sieve-valued generalized valuatiaf-em
particular one associated with a quantum state—induces an “interval valuation”
in various senses of the phrase. These various senses differ about whether to take
the assigned intervals at the various stages to define:

(i) A subobject ofxz, or
(ii) A global element ofG, or
(iii) A subobject ofG.

But these different senses of “interval valuation” are similar in that all are defined
in terms of the set of “totally true” projectors at each stsgef the base-cateogory
V. Thus for any sieve-valued valuationwe defined théruth set

TY(V) := {P € L(V) | v(P) = truey} (2.25)

so that, in particular, for the valuatiorf associated with the quantum stateve
have

TP(V) = (P e L(V) | p(P) = 1}. (2.26)

We used these truth sets in two ways. First, we defined interval valuations
that are subobjects & by assigning to each stadf the subset of the spectrum
o (V) consisting of all functionals that “make certain” all members of the truth set
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TV(V). That is, for any sieve-valued valuationwe assign td/ the set:

I'(V)=1{cea(V) [k(P)=1, YPeT"(\V)}= (] V(P). (227
PeT (V)

This assignment gives a subobject®imeaning that iV, C Vi, thenlV(V,) D
[V(V1) |v,) provided the following condition (Eq. (4.9) of Hamiltet al. (2000))

If\V, € V; then infT(Vy) > inf T(Vh) (2.28)

is satisfied—which it always is for the valuatiomsassociated with quantum states
p because for these valuatiohi¥' (V,) € TV (V4). Itis also satisfied for the “prob-
ability r” quantum valuations”'', i.e. with truth sets defined using Eq. (2.24).
Second, we defined interval valuations that are global eleme@tdgptaking
the infima of these truth sets (using the fact th@Y ) is a complete lattice) to define
what we called theupport(of the valuation, or the quantum state) at each stage

s(v, V) :=inf T"(V) = inf{P € L(V) | v (P) = true,} (2.29)
so that in particular, for the valuatiarf
s(p, V) :=inf T*(V) = inf{P € L(V) | p(P) = 1}. (2.30)

An example of an interval valuation that is a global elemenGdé given
by assigning to each stadg the support at that stags(v, V) or s(p, V). This
assignment gives a global element®@fprovided that supports (infima of truth
sets) “match up” under coarse-graining in the usual sense that

If Vo € Vi, then infP e TV(V2)} =: s(v, Vo)
= G(iv,v,)(inf{P € T"(V1)})
= G(l V2V1)(S(v! Vl)) (231)

This condition is satisfied for the valuationg associated with quantum states
o (but not for the “probability r” quantum valuationa”:", i.e. with supports
s(v”', V) defined on analogy with Eq. (2.29) but using Eq. (2.24)).

We note that the notion of an interval valuation that is a global eleme@t of
is stronger than the notion of a subobjectofitreated in case (i) above) in the
sense that any global element®fdefines a subobject & but not vice versa.
Thus any global element of G—i.e. an assignment such that ifV, C V; then
y(V2) = Gliv,v,)(y(V1))—defines a subobjett of X by

17(V1) == Va(y (M) = {k € o (V1) | k(¥ (V1)) = 1} (2.32)

6Eq. (2.27) shows how “interval” is here used abstractly: an algsbia assigned a subset of its
spectrum, i.e. a set of multiplicative linear functionals\drwhich corresponds to a subset of the
spectrum of each operator in the algebra.
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sincex (P) = 1 impliesk (G(iv,v,)(P)) = 1, so that ” (V1) |y, < 17(V2). We can
also put this in terms of the isomorphisshin Section 2.4 betwee@ and Cla&®
whose component mapsy : P € G(V) — V(P) € CloX carry the global ele-

menty of G into a global element of CIb, i.e. a subobject oE.

3. THE CORRESPONDENCE BETWEEN INTERVALS AND SIEVES
3.1. Prospectus

So much by way of review. In the rest of this paper we shall report some
new results about the relation between sieve-valued valuations and interval val-
uations; where both of these notions will be understood more generally than in
Sections 2.5-2.7. However, in this section (though not Section 4) all the interval
valuations to be discussed will be like those in Section 2.7, in the sense that they
will be based on the notion of truth sets and associated ideas (especially the infima
of truth sets, i.e., supports).

In this section, we will discuss a kind of correspondence between sieve-
valued valuations and interval valuations. So despite the marked differences be-
tween sieve-valued valuations and interval valuations—for exampléwe see
projectors or propositiongersusalgebras as arguments, and sievesussets of
linear functionals as values—it turns out that they correspond. Indeed, in a sense
they mutually determine each other. We have already seen in Section 2.7 how
sieve-valued valuations determine interval valuations, via the idea of truth sets.
The converse determination, of sieve-valued valuations by interval valuations, is
simplest for the case where the interval valuations are global elemeats.ef for
case (ii) of Section 2.7, where we use not just truth sets, but their indimpports
We shall present this in Section 3.2.1.

Then in Section 3.2.2 we shall discuss case (i) in Section 2.7, where the
interval valuations are subobjects Bf

In both this section and the next, our discussion will again concentrate on
since, as mentioned in the Introduction, usi@voids measure-theoretic diffi-
culties about the spectra of operators (and functions of them) which ari8e in
But since our results aboM are rather abstract, it will be heuristically helpful
to report the corresponding claims abditi.e. to state what our results imply
about presheaves ov€rat those stages (i.e. operatorsibthat do not have these
measure-theoretic difficulties. (These stages will include all operators with a pure
discrete spectrum.) Sowe reportthese corresponding claims@f8ection 3.3.

7So as in Hamiltoret al. (2000), we are not concerned here to appeal to interval valuations to solve
the measurement problem, namely by assigning intervals to some or all quantities that are “narrow”
enough to give definite results to quantum measurements and yet “wide” enough to avoid the Kochen—
Specker and other “no-go” theorems. For a recent discussion of this strategy, as it occurs within the
modal interpretation, cf. (Vermaas, 2000).
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3.2. The Correspondence irV
3.2.1. The Case of Global Elementd®f

The correspondence between sieve-valued valuations and interval valuations
is simplest for the case where the interval valuations are global eleme@tdmof
each “direction,” there is a natural and simple sufficient condition for correspon-
dence, satisfied by “most” of the valuations discussed in Sections 2.5-2.7. More
precisely: given a sieve-valued valuati@nand the corresponding interval valu-
ation,s* say, thatr defines in terms of supports, then there is a simple sufficient
condition ((i) below) forx to equal a valuation naturally defined #ywhich takes
sets of morphisms as values. And in the other direction: given an interval valuation
a and the corresponding valuatia®, say, that naturally defines and which takes
sets of morphisms as values, treerquals the interval valuation defined in terms
of the supports 0&?; and there is a simple sufficient condition ((ii) below) for
o to be sieve-valued. In fact, condition (i) is that supports should form a global
element ofG.

But before stating these results it is illuminating to show that, taken together,
conditions (i) and (ii) are also sufficient to imply that a valuation is an assignment
of sieves, and also obey8JNC. This claim is made precise in Theorem 3.1. It
shows that conditions (i) and (ii) taken together are sufficient for an assigrmment
to each stag¥ in V and eac® € G(V) := £(V) of a set of morphismay (P) €
{iviv 1 V' — V}, to satisfy three conditions. Namely, the conditions: (a) shist
sieve-valued (i.e. eaal(V) is a sieve oV); (b) thate obeysFUNC; and (c) that
« obeys a characterization that encapsulates the correspondence between sieve-
valued valuations and interval valuations. (This characterization will also lead in
to the discussion in Section 4.)

We begin by noting that for any sueh i.e. any such assignments (P) <
{iviv 1 V' — V}, we can define truth sets and (sin¢@/) is complete) supports,
just as in Egs. (2.25) and (2.29). So we write thes& §¥/) ands(«, V) respec-
tively. Similarly, for any suchy, the condition that supports “match up” under
coarse-graining, makes sense; cf. Eq. (2.31), substitutiiog v.

Theorem 3.1. Let« be an assignment to each stage VMnand eachP e
G(V) := L(V) of a set of morphismay (P) < {ivv : V' — V} with codomain
V.Let T*(V)and q«, V) be defined as in Egs. (2.25) and (2.29) respectively (just
substitutingx for v). Suppose that obeys:

(i) IfV2 S ViandP € £(V1), theniyy, : Vo — Vi € av,(P)iff s(e, Va) <
G(iV2V1)(P);

(i) Supports give a global element @f i.e. they match up under coarse-
graining, in the sense of Eq. (2.31), i.e.,

If Vo C Vg, S(Ol, V2) = G(ivzvl)(S(Ol, V]_)) (31)
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Then:

(a) Eachay(P) is a sieve;
(b) o obeys FUNC, as in Eq. (2.14), i.e.,

av, (G(iV2V1)(IS)) = i\*/zvl(aV1(|s)) (3.2)
(c) « obeys
avy(P) = {ivv, : V2 = V1 | Glivyw)(S(er, V1)) < G(ivv, )(P)}.
(3.3)
Proof:

(a): Giveniy,y, € avl(ls), the condition (i) and the monotonicity &f(iv,v,)
imply that for anyVs € Va, G(iv,v,)(S(e, V2)) < Gliv,y,)(P). But by
(it), Glivsv,)(S(er, V2)) = s(, Va); so that by (i)iv,v, € v, (P).

(b): Condition () implies that Otvz(G(lvzvl)(P)) ={ivy, : V3 —> Vs |
S(Ol V3) < G(|V3V1)(P)} and thatlvv (Olvl(P)) = {IVQ)\/2 V3 — V2 |
|V2V1 © |V3V2 € aVl(P)} = {|V3V2 1V — V2| S(O! V3) = G(|V3V1)(P)}
(So result (b) depends only on the condition (i)).

(c): Immediate: apply (i) i.e., Eq. (3.1) to the condition in (i) tisét, V) <
Gliv,v,)(P). QED.

In particular, the sieve-valued valuations associated with quantum states (for
probability 1, but not with 0 <r < 1) obey the conditions of Theorem 3.1. For
we noted in Section 4.3 of Hamiltoet al. (2000) that (i) i.e. Eq. (2.31), holds
for these valuations; and (i) holds trivially for them, sSine€G(iv,v,)(P)) = 1
iff (0, V2) < Gliv,w,)(P).

We turn to describing how conditions (i) and (ii) are, respectively, natu-
ral sufficient conditions for: (a) a sieve-valued valuation to be determined by an
interval-valued valuation that it itself determines; and (b) an interval valuation to
be determined by a sieve-valued valuation that it itself determines.

First, suppose is an assignment to each stagén V and eact® € G(V) :=
L(V) of a sieve onV. We can define truth sets and (sin€éV) is complete)
supports, as in Egs. (2.25) and (2.29). Let us write thes€“4¥) ands*(V)
respectively. Then we define a valuation with sets of morphisms as values, in
terms of thes*(V), by

o5 (P) == {ivv, 1 Vo = V1 [ $%(V2) < Gliv,v,)(P)) (3.4)
and ask: doess, (P) = av,(P)? The answer is trivially: “Yes” if and only ié

obeys condition (i) of Theorem 3.1. (We note incidentally that this argument,
including its definition of truth sets and supports, does not require that the given
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« assign sieves. It is enough, as in Theorem 3.1,d¢Ha an assignment to each
stageV in V and eactP € G(V) := £(V) of a set of morphisms with codomain
V: the conclusion, thats” = « iff « obeys condition (i), is unaffected.)

Second, supposeis an assignment at each stagen V of an element of
G(V) := L(V). (We do not for the moment require thratlefine a global element
of G.) Then we define a valuatiar?, with sets of morphisms as values, on &l
in eachG(V) := L(V), in terms ofa, as follows:

a8 (P) := {iv,v, 1 Vo = Vil a(Va) < G(ivw)(P)}. (3.5)

It follows that the suppor$(«?, V), defined in the usual way (cf. Eq. (2.29)) is
equal taa(V). Thatis, suppose we define truth sets and support&forthe usual
way; cf. Egs. (2.25) and (2.29). Then note that

P e T (V)iff a(V) < G(ivv)(P) = P, (3.6)

so thats(e?, V) = inf T**(V) = a(V).

But under what conditions ig? sieve-valued (i.ea?,l(lf’) is always a sieve)?
In fact, the condition (ii) in Theorem 3.1—i.e. the condition thatefines a global
element ofG—is a natural sufficient condition for this. For suppose kg, €
a8 (P), i.e. a(V2) < Gliv,y,)(P), and pick anyiv,y, : V3 — Vz. SinceG(iv,y,)
is monotonic, we geG(iv,y,)a(Ve) < G(iv3vl)(|5). Assuming (i), i.e.G(iv,v,)a
(V2) = a(Vs), it follows thatiy,y, € a@l(lf’), i.e.a@l(ﬁ’) is a sieve.

3.2.2. The Case of Subobjectssof

We return to case (i) of Section 2.7. We recall that for any sieve-valued
valuationv, the interval valuation that assigns to each stdgihe subset of the
spectrumo (V) consisting of all functionals that “make certain” all members of
the truth seff ¥ (V), i.e. the interval valuation of Eq. (2.27):

I'(V)i={cea(V) [k(P)=1, YPeT'(\V)}= (] V(P) (37
PeTv(V)

defines a subobject & provided Eq. (2.28) is satisfied:
If Vo C Vi then infT"(Vy) >inf T"(Vy), i.e.s(v, Vo) > s(v, V1). (3.8)

(Incidentally, this argument does not require théte a sieve-valued valuation in
the strong sense of Definition 2.3 (Section 2.5); it works for any assignment, to
each stag® in V and eactP € G(V) := £(V), of a sieve orV.)

To obtain the analogue of Theorem 3.1 for the case of subobjeEtsa note
that condition (i) of Theorem 3.1 says thafy, : Vo — Vi € ay,(P) if and only if
s(at, V) < G(iv,v,)(P), ie. iff G(iv,v,)(P) is certain atv, according tax. So we
expect the corresponding condition, for a subobjéatf X, to be that *(V,) C
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Vo(G(i vzvl)(ls)) (= V1(|5)|V2 by the isomorphism Eq. (2.11) in Section 2.4). Indeed
we have:

Theorem 3.2. Let« be an assignment to each stage VMnand eachP e
G(V) := L(V) of a set of morphismaV(IS) C{iywv : V' — V} with codomain

V. Let T*(V) andI®(V) be defined as in Eqgs. (2.25) and (2.27) respectively (just
substitutingx for v). Suppose that obeys:

(i) If V2 € Viand P e £(V1), then iy, : Va — V1 € ay, (P) iff 19(V) ©

Vl( P)le;
(i) theintervald® give a “tight” subobject ofZ in the sense that they match
up exactly under restriction, i.e.,

If Vo € Vi, then 1%(V,) = 19(Vh)ly, : not mereld*(Vz) 2 19(V1)v,;

(3.9)
Then:
(a) Eachay (P) is a sieve;
(b) « obeys FUNC, just as in Egs. (2.14) and (3.2), i.e.,
v, (Givow, ) (P)) = i3, (v, (P)) (3.10)
(c) « obeys
oy (P) = {iv 1 Vo= Vi [ 1*(VD)ly, SVa(P)lv,}  (3.10)
Proof:

(a): Giveniy,y, € avl(lf’), the condition (i) and the monotonicity of taking
restrictions (i.e. ifX andY are sets of functions on a common domain of
which Z is a subset, theX C Y implies X|z C Y|z) imply that for any
V3 C Vy, 19(V2) |y, € VA(P) |v,. But (ii) implies|*(Va) C 14(V2) |v,; SO
thatl*(Vs) € Va(P) Iy, and by (i)ivay, € o, (P).

(b): Condition (i) implies thatvy, (G(iv,v, )(P)) = {ivav, 1 Va — Vo | 19(V3)

- VZ(G(iVZVI)(IS)) lv;}. But the isomorphism o6 and Claz (cf. dia-
gram 2.10 and Eq. (2.11)) means tNa{G(iv,,)(P)) = Vi(P)|\,; re-
stricting both sides of this equation to axy C V,, we getVa(G(iv,v,)
(P)Iv, = V1(P) |v,. On the other hand, condition (i) also implies that
v (@i (P)) 1= {ivey, 1 V3 = Va2 livyy, olvey, € v (P)} = fivgy, ¢
Vi3 — Vo | 1%(V3) € V1(|5)|V3}. (So result (b) depends only on the
condition (i).)

(c): Immediate: apply (i) i.e. Eq. (3.9) to the condition (i) tH&(V2)
Vi(P)lv,- QED.
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We remark that the analogy with Theorem 3.1 is very close, but we could
equally well have proven Theorem 3.2 first. Indeed, much of Theorem 3.2 can be
stated and proved without mention@f More precisely, the coarse-graining map
G(iv,v)(), taking projectorsﬁ’ € G(V1) to projectors irG(V,), is for the most part
replaced by the may;(-)|v,, taking projectord® € G(V1) to subsets oE(V,). In
particular, only part (b) needs to menti@and to make use of the isomorphism
in Section 2.4 betweeB and Cla:.

In particular, the sieve-valued valuations associated with quantum states (for
probability 1, but notr with 0 <r < 1) obey the conditions of Theorem 3.2.
For we noted in Section 4.4.1 of Hamiltat al. (2000) that (i) i.e., Eq. (3.9),
holds for these valuations. Besides, (i) holds for these valuations because of the
isomorphism betwee® and Claz, specifically Eq. (2. 11)Va(G(iv,v,)(P)) =
Vl(P)|V2, as follows. By the definition ob” (cf. Section 2.6)iv,y, : Vo — V1 €
vV (P) iff G(lvzvl)(P) € T*(V2). On the other hand, condition (i) far’ is that
|p(V2) - V;|_(F))|V2 = V2(G(IV2V1)(P)) i.e. thatifxk € O(Vz) and/c(P) =1, VP €
T7(V), thenx(G(lvzvl)(P)) = 1; which is just thaG(lvzvl)(P) e TP (Vo).

Furthermore, the discussion of the second half of Section 3.2.1 also carries
over mutatis mutandis(though there is one difference). That is: conditions (i)
and (ii) are again, respectively, natural sufficient conditions for: (a) a sieve-valued
valuation to be determined by an interval-valued valuation that it itself determines;
and (b) an interval valuation to be determined by a sieve-valued valuation that it
itself determines.

First, suppose is an assignment to each stagéen )V and eactP e G(V) =
L(V) of a sieve orV. We can define truth sets as in Eq. (2.25), i.e.,

TYV) := {P € L(V) | ay(P) = truey} (3.12)

and intervals as in Eq. (2.27), i.e.,

(V) i={k e (V) | k(P) =1, VP e TV)) (3.13)
Then we define a valuation with sets of morphisms as values, in termslé{ihg
by:

oy, (P) = {ivov, 1 Vo = V1l1(V2) € Vi(P)Iv, )i (3.14)
and ask: doea{fl(lf’) = ozvl(IS)? The answer is trivially: “Yes” if and only i&
obeys condition (i) of Theorem 3.2. (As in Section 3.2.1, we note incidentally
that this argument, including its definition of truth sets and intervals, does not
require that the give assign sieves. It is enough, as in Theorem 3.2, g¢hat
be an assignment to each stagén V and eachP € G(V) := L(V) of a set of

morphisms with codomail: the conclusion, that'* = « if and only if « obeys
condition (i), is unaffected.)
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Second, supposgis an assignment at each stagen V of a subset(V)
of X (V) := o (V). (We do not for the moment require tratefine a subobject of
3.) Then we define a valuatiagf, with sets of morphisms as values, on Rlin
eachG(V) := L(V), in terms ofa, as follows:

ad (P) = {ivy, 1 Vo — Vi | a(Vo) € Vi(P)lv, }. (3.15)

As in Section 3.2.1 (after Eq. (3.5)), we ask whether the intd®/&V), defined

in the usual way (cf. Egs. (2.27), (3.12), and (3.13)) is equa(¥). But in
Section 3.2.1, the answer was automatically “Yes”; now it is not. For defining
truth sets and intervals in this way, we get:

P e T¥(V)iff a(V) € V(P)lv = V(P), (3.16)

so thatc € (V) isin1*(V) if and only if for all P with a(V) € V(P), we have
«(P) = 1. All elements ofa(V) fulfill this condition so thag(V) < 19°(V). But
the converse inclusion requires thakifZ a(V) then there i€ with a(V) < V(Q)
and«(Q) # 1. And in general this will not hold: i is in the closure of(V),
butx ¢ a(V), then any clopen (so closed) supergetf a(V) must contairx; and
any suchy is V(Q) for someQ. To get this converse, and a¢V) = 1*°(V), the
natural sufficient condition is that the given sat¥) should be clopen. (Recall
from Section 2.4 that every clopen subset«ofV) corresponds to a projector
whose Gelfand transform an(V) is the characteristic function of the subset.)
But under what conditions ig? sieve-valued (i.ea?,l(IS) is always a sieve)?
In fact, the condition (ii) in Theorem 3.2—i.e. the condition thakefines a “tight”
subobject of£—is a natural sufficient condition for this. For suppose that €
od (P), so thata(Vz) < Vl(l5)|vz, and pick any,y, : Vs — Va. Since restriction
is monotonica(Vz)lv, € Vi(P)lv;. Assuming (i), i.ea(Vz)|v, = a(Va), itfollows

thativ,y, € of (P), thuseg (P) is a sieve.

3.3. The Correspondence irO

The discussion in Section 3.2 is quite abstract. So it is illuminating to present
the same ideas in a more concrete setting: namely, the valuatidisssociated
with a quantum stat¢y € H, or more generally a density matrix which (cf.
Section 2.6, especially Eq. (2.21)) are defined by

VW(AeA):={fo:B— A|E[Be f(A)]y =y} (3.17)
and
V(A€ A):={fo:B— A| tr(pE[B e f(A)]) = 1}. (3.18)

However, as mentioned in Section 3, various measure-theoretic difficulties
about the spectra of operators (and functions of them) ari€. ihhese centre
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around the fact that iB = f(A) (so that there is a morphisify, : B — Ain O)
then in general, the corresponding spectra (now consisting of elemeRtsot
of linear functionals on operators!) have only a subset inclusion

f(o(A) S o(f(A) (3.19)

not necessarily an equality; though of courseAihas a pure discrete spectrum,
then f (o (A)) = o (f(A)).
This situation prompts three further remarks:

1. For the role of Eq. (3.19) in defining the spectral presheaftdoref.
Section 2 of Isham and Bultterfield (1998).

2. As noted in Section 2.1 of Isham and Butterfield (1998), the set of self-
adjoint operators oft{ that have a pure discrete spectrum is closed under
taking functions of its members, and so forms a base-cate@grgn
which we can define a spectral presheaf and a coarse-graining presheaf in
a manner exactly parallel to the definitions o¢&r

3. For a more precise statement of the relationf ¢ (A)) and o ( f (A)),
cf. Eq. (2.9) of Isham and Butterfield (1998).

To sum up: it will be heuristically helpful to report what the results in
Section 3.2 imply about presheaves o¢&ffor those operators for which these
measure-theoretic difficulties dmtarise. As just mentioned, this will include all
operators with a pure discrete spectrum; and the rest of this Section can be read as
strictly true for the spectral presheaf and coarse-graining presheaf defiggd on

We will do this in two stages, in the next two subsections. Both depend
on the following “definition” of what we will call theelementary supporf a
quantum state, relative to a stage (i.e., relative to an opefaior®). We say
“definition” since the infimum of a family of Borel sets is not in general Borel,
so that the definition applies only in special cases, in particul@gsn(And we
say “elementary,” since these supports are, as usual, subsRtsaafl we want
to emphasise the distinction from the rigorously defined supports discussed in
Section 3.2.)

Definition 3.1. The elementary suppor(y, A), of a vector statey € H for a
quantity A, is the smallest set (measure-theoretic niceties apart!) of real numbers
for which iy prescribes probability 1 of getting a result in the set, on measurement
of the physical quantityA. And similarly for a density matriy. More precisely:

sy, A) := infgore{A C R | E[A € Aly = /).

o . (3.20)
S(p, A) = meorc—:‘I{A CR| tl’[,OE[A € A]] =1}
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3.3.1. Characterizing Quantum Valuations With Elementary Supports

Given this definition of supports, we can deduce a characterization of the
sieve-valued valuations oY associated with quantum states as defined in
Egs. (3.17) and (3.18). This characterization is the analogue of those in
Theorem 3.1, i.e., Eq. (3.3) of part (c), and in Theorem 3.2, i.e., Eq. (3.11); and
this characterization, being more concrete, is heuristically valuable.

ForanyA, A, andf : A C f7Y(f(A)), we haveE[ f(A) € f(A)] = E[A e
f=1(f(A))], and henceE[A €Al < E[f(A) e f(A)]. This gives as a sufficient
condition for an arrowfo : B — Atobe mv‘/’(A € A), thatf(s(y, A)) C f(A).

For suppose that (s(y, A)) € f(A). ThenE[A e s(y, A)] < E[f(A) € f(s(v,
A)] < E[f(A) € f(A)]. So sinceE[A € s(¥, A)]y = v, we haveE[ f(A) e
FAY = v A

This condition, that f(s(y, A)) € f(A), is also necessary. For since
E[f(A) € f(A)] = E[A e f71(f(A))], we have that an arrow : B— Ais
invY(Ae A)ifand only if f~ 1(f(A)); s(y, A). But applyingf to this last we
get: f(f(f(a)) = f(A) 2 f(s(y, A). .

Thus we have the result (strictly ®4, and inO, for thoseA, B, A for which
measure-theoretic difficulties do not arise):

VW(Ae A)={fo:B— A: f(A)D f(s(v, A)}. (3.21)

This argument can be adapteduto ands(p, A). We use the fact thafe :
B— Ac(Ac A) if and only if trp E[Ae f-1(f(A)]] =1 if and only if
f=1(f(A)) 2 s(p, A) which, applying f, implies thatf(A) 2 f(s(p, A)) So
we get the result (again, strictly i@4; and in©O, measure-theoretic difficulties
apart):

V(AeA)={fo:B— A:f(A)D f(s(p, A)). (3.22)

Each of Egs. (3.21) and (3.22) is clearly an analogue of part (c) of Theorem
3.1, which was

av,(P) = {ivv, : Vo = Vi | Givyy,)(S(e, V1) < G(ivew,)(P)},  (3.23)
and of part (c) of Theorem 3.2, which was
av,(P) = {ivv, 1 Vo = Vi [ 1 (V)ly, € Va(P)Iv, }. (3.24)

In short we see that (iA corresponds td/;; (i) A corresponds td®; (iii) f
corresponds to coarse-graining Biv,v,) in Theorem 3.1, and by restriction
to V, in Theorem 3.2; and (iv) elementary supports correspond to the rigorous
supports in Theorem 3.1 and to the intervals in Theorem 3.2.

We note incidentally that the fact thét € H is determined by the set of
“certainly true” pairs(A, A) (i.e. the pairs for whichv(A € A) = | A), together
with the fact thaty itself determinesy = v¥ by Eq. (3.17), implies that



Topos Perspective on the Kochen—Specker Theorem 635

v =¥ is determined by the set of “certainly true” pait&, A). This “two-step-
determination” argument (going via) shows that for pure quantum statzsone

of the sieve-valued valuation¢ (a sieve-valued valuation that is induced by some
or otheryr according to Eq. (3.17)) is determined by the “certainly true” i.e.Arue
assignments that it makes.

3.3.2. Supports Give Subobjectssobn O

We recall that assigning to eadhe O a subset(A) of its spectrumy (A)
gives a subobject a (rather than the global elements prohibited by the Kochen—
Specker theorem) provided the assignment obeys the “subset” verdisiNg:
viz.,

f(a(A) < a(f (A). (3.25)

In particular, elementary supports, as defined in Definition 3.1, induce subobjects
of X—i.e. interval valuations obeying Eq. (3.25). For evenAithas in part a
continuous spectrum, the subset conditions:

f(s(v, A) S s, T(A);  f(s(p, A) Ss(p, T(A)  (3.26)
hold. So each of the interval valuations defined by
a’(A) =s(y, A);  a’(A) i=s(p, A) (3.27)

is indeed a subobject &. If A has pure discrete spectrum, Eq. (3.26) becomes
an equality, both for a vector state and a density matrix:

fsw, A) =s(y, f(A); (s, A) =s(p, f(A). (3.28)

4. DEFINING SIEVE-VALUED VALUATIONS IN TERMS
OF SUBOBJECTS OF X

As we have seen, the correspondence, indeed mutual determination, in
Section 3 between sieve-valued and interval-valued valuations holds for a wider
class of valuations than just those discussed in Sections 2.5-2.7. In particular,
Theorems 3.1 and 3.2 used only the first clause of the definition in Section 2.5 of
a sieve-valued valuation (Definition 2.3), viz. the requirement that a sieve-valued
valuation obeyFUNC. This situation suggests that it would be worth surveying
different ways of defining sieve-valued and interval-valued valuations—and the
properties that ensue from these definitions. In this Section we undertake a part
of such a survey. It will show in particular that the valuations we have consid-
ered are a very natural way to secure the properties listed in the other clauses of
Definition 2.3.



636 Butterfield and Isham

To be precise: we will focus on the role played in the results of Section 3 by our
having defined generalized valuations (with sets of morphisms as values) in terms
of the partial order relation at each stage. That is, we note that in the discussion of
global elements o in Section 3.2.1, the results about such valuations repeatedly
invoked the partial ordex in G(V) := L(V) (cf. in particular, (i) of Theorem 3.1);
and in the discussion in Section 3.2.2 of subobjectX pthe results repeatedly
invoked subsethood among subsets of the spectrurV) (cf. (i) of Theorem
3.2). In both cases, the relation is use&¥/atthe coarser of two stagéb < Vi to
connect a notion “intrinsic” t&/, (i.e.,s(a, V») andl*(V,) respectively) to a notion
got by coarse-graining frot; (i.e., G(iv,v,)(P) andVi(P)ly, = Va(G(iv,v, )(P))
respectively).

So we will now ask how the properties of valuations taking sets of morphisms
as values that are defined in terms of interval valuations by using a reRtion
connect a notion intrinsic to a stalye to another notion got by coarse-graining
from a finer stag&/;, depend upon the choice of the relatiBnThat is to say, we
will now consider the following schema for defining from a given global element
a of G, a valuation taking sets of morphisms as values, in terms of an arbitrary
binary relationR:

a&R(B) = {ivv, : Vo > Vi | a(Vo) RG(iv,w)(P)}. 4.1)

The analogous general schema starting from an interval valuatioat is a sub-
object of X is

aGR(P) = {ivy, : Vo2 = Vi [a(V2) R A(P)ly, }. (4.2)
Similarly, for the case o (cf. Section 3.3), the general schema is
afR(A) =a*R(AeA)={fo:B—> Ala(B)R f(A)}.  (4.3)

But we will discuss only Eq. (4.1); our results carry ovneuntatis mutandiso the
cases of Egs. (4.2) and (4.3).

This leads us to ask what conditions Brin Eq. (4.1) correspond, as either
necessary or sufficient conditions, to various properties of the valuafiéi?
The following results can be immediately verified. We give them in the same
order as the conditions listed in our original definition of a sieve-valued valuation
(Definition 2.3, in Section 2.5).

0] a{‘,’lR(If’) is a sieve if and only iR is stable under coarse-grainirig the
sense that i(V2) R G(iv,v,)(P), then for allVz € Vz, a(Vs) RG(iv,v,)
(P).

Sincea is assumed to be a global elemen@fso that for allvV’ C
V, a(V’) = G(ivv)a(V), the consequent in this condition becomes

a(Vs) = G(ivav,)a(V2) R G(ivev,)(P) = Givsw,)G(ivow, )(P). (4.4)
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SinceG is monotonic with respect tg, choosingR to be<, as we have
done (cf. Egs. (3.1) and (3.3)) is a very natural way to secure sievehood.
(i) For any relationR whatsoevery® R obeys functional composition in the
form of Eq. (3.2), i.e.,
o, (G ivow ) (P)) = 10y, (47 (P)). (4.5)
To see this, note that in the argument of part (b) of Theorem 3.1, any
relation R could be substituted fox.
(iii) «*R obeys the null proposition condition, i«;~(0) = ¢, if and only if
there is nov, C V4 with a(V,) RO (sinced coarse-grains t0). Provided
a always assigns a nonzero projector, this condition is satisfied by our
choice ofR as<.
(iv) «*R obeys the ‘monotonicity condition, i.e. B < Q e £(Vy) then
(P) <ag (Q) if and only if Ris isotone under coarse-grainirig
the sense that

[P<Q and a(Vo) RG(ivy,)(P)] = a(Vz) RG(iv,)(Q). (4.6)

SinceG is monotonic with respect tg, the natural sufficient condition
for this is that the relatiofR is stable under taking larger elements on its
left hand side, i.e.,

[S<T and a(\u) RY = a(\L) RT. (4.7)

Again, the natural choice for satisfying this is thats taken to be<.
(v) «®R obeys the exclu5|V|ty condition, that BQ =0 anday; (P)
v, = truey,, thenad; (Q) < truey, if and only if

If PQ=0 and YV, C Vi, a(Va) RG(ivv)(P),
then3V; C V; such that noa(Vs) R G(iv,y,)(Q).  (4.8)

Here, the condition in terms d® is not very different from exclusivity
in the original form; and so seems not very illuminating. But provided
a always assigns a nonzero projector, this condition is satisfied by our
choice ofR as<. For if PQ 0 and, for allV, € Viwe havea(Vz) <
G(Ivzvl)(P) thena(Vy) < P, so that—a(V1) < O (sincea(V4) # 0),
and hence:§;=(Q) # truey,.

(vi) «®R obeys the unit proposition condition, thef;“(1) = true,,, if and
only if for all V> € Vi we havea(Vy) RG('Vzvl)(l) =1y, (smcel
coarse- gramstm) Again, the natural way for satisfying this is to choose
the relationR to be<.

These results show that there is a natural choice of the rel&®jowiz.
R := <, which is sufficient to yieldall of the properties (i.e. clauses (i)—(v)
of Definition 2.3), provideda always assigns a nonzero projector. And again
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this conclusion reflects the theme of Section 3, viz. the correspondence between
sieve-valued and interval-valued valuations, and in particular the characterization
Eq. (3.3) (part (c) of Theorem 3.1).

Furthermore, analogous results are easily verified for the schemasin Egs. (4.2)
and (4.3). More precisely: taking the relatiBras subsethood; in these schemas
is sufficient for these properties, provided some “regularity conditions” hold. These
conditions include:

1. The analogue of the proviso above, thalways assigns a nonzero pro-
jector (i.e. that always assigns a nonempty subset).

2. The requirement that defines a “tight” subobject o, in the sense of
Eq. (3.9).

3. Forthe case db, (i.e. schema 4.3) for all bounded Borel functiohand
all A, we have the equality (o (A)) = o (f (A)) (as always occurs i has
pure discrete spectrum), not merdlg (A)) € o (f(A)) asin Eq. (3.19).

But we will not go into details of just how these regularity conditions make choos-
ing R as subsethood sufficient for the various properties (i)—(vi) above, for

the schemas of Egs. (4.2) and (4.3). But again the conclusion—that tBkésy
subsethood in these schemas is sufficient for these properties—reflects the corre-
spondence in Section 3 between sieve-valued and interval-valued valuations; and
in particular the characterizations, Eq. (3.11) (fopart (c) of Theorem 3.2), and

Egs. (3.21) and (3.22) (fap).

5. CONCLUSION

In this paper, we have extended our topos-theoretic perspective on the assign-
ment of values to quantities in quantum theory; principally using the base category
V of commutative von Neumann algebras introduced in Hamiétbal. (2000).

In Section 3, we compared our sieve-valued valuations with interval valuations
based on the notion of supports. This discussion (adding to some results reported
in Section 4 of Hamiltoret al. (2000)) had as its main theme a correspondence
(mutual determination) between certain sieve-valued valuations and corresponding
interval valuations. This correspondence was summed up/fan the charac-
terizations given in parts (c) of Theorems 3.1 and 3.2, Egs. (3.3) and (3.11); and
summed up more heuristically f@?, in Egs. (3.21) and (3.22).

In Section 4, we generalized this discussion: we gave a partial survey of
how in defining sieve-valued valuations in terms of interval valuations, certain
properties of the sieve-valued valuations derive from the properties of the binary
relationR used in the definition. This survey again showed the naturalness of our
previous definitions. For taking to be the partial ordex among projectors, or
to be subsethood among subsets of spectra, was a natural and simple sufficient
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condition for the defined valuations to obey the clauses of our original definition
of sieve-valued valuations (Definition 2.3).
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