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We extend the topos-theoretic treatment given in previous papers (Butterfield, J. and
Isham, C. J. (1999).International Journal of Theoretical Physics38, 827–859;
Hamilton, J., Butterfield, J., and Isham, C. J. (2000).International Journal of Theo-
retical Physics39, 1413–1436; Isham, C. J. and Butterfield, J. (1998).International
Journal of Theoretical Physics37, 2669–2733) of assigning values to quantities in
quantum theory. In those papers, the main idea was to assign a sieve as a partial and
contextual truth value to a proposition that the value of a quantity lies in a certain
set1 ⊆ R. Here we relate such sieve-valued valuations to valuations that assign to
quantities subsets, rather than single elements, of their spectra (we call these “interval”
valuations). There are two main results. First, there is a natural correspondence between
these two kinds of valuation, which uses the notion of a state’s support for a quantity
(Section 3). Second, if one starts with a more general notion of interval valuation, one
sees that our interval valuations based on the notion of support (and correspondingly,
our sieve-valued valuations) are a simple way to secure certain natural properties of
valuations, such as monotonicity (Section 4).

KEY WORDS: Kochen–Specker theorem; topos theory; valuations; supports; quan-
tum logic.

1. INTRODUCTION

In three previous papers (Butterfield and Isham, 1999; Hamiltonet al., 2000;
Isham and Butterfield, 1998) we have developed a topos-theoretic perspective on
the assignment of values to quantities in quantum theory. In particular, it was
shown that the Kochen–Specker theorem (Kochen and Specker, 1967) (which
states the impossibility of assigning to each bounded self-adjoint operator on a
Hilbert space of dimension greater than 2, a real number such that functional re-
lations are preserved) is equivalent to the nonexistence of any global elements of
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a certain presheaf6, called the “spectral presheaf.” This presheaf is defined in
closely analogous ways on the categoryO of bounded self-adjoint operators on
a Hilbert spaceH (cf. Butterfield and Isham, 1999; Isham and Butterfield, 1998),
and on the categoryV of commutative von Neumann subalgebras of the algebra
of bounded operators onH (cf. Hamiltonet al., 2000).4

A key result of Butterfield and Isham (1999), Hamiltonet al. (2000), and
Isham and Butterfield (1998) is that, notwithstanding the Kochen–Specker theo-
rem, it is possible to define “generalized valuations” on all quantities, in which
any proposition “A ∈ 1” (read as saying that the value of the physical quan-
tity A lies in the Borel set of real numbers1) is assigned, in effect, a set of
quantities that are coarse-grainings (functions) ofA. To be precise, such a propo-
sition is assigned as a truth value a certain set of morphisms in the category
O (or V), this set being required to have the structure of asieve. These gener-
alized valuations can be motivated from various different perspectives (cf. also
Butterfield, 2001). In particular, they obey a condition analogous to theFUNC
condition of the Kochen–Specker theorem, which states that assigned values
preserve functional relations between operators, and certain other natural con-
ditions too. Furthermore, each (pure or mixed) quantum state defines such a
valuation. In Section 2 we will briefly recall the details of these proposals and
results.

In this paper, we shall extend this treatment in two main ways (Sections 3
and 4 respectively). Both involve the relation between sieve-valued valuations and
valuations that assign to a quantityA, not an individual member of its spectrum,
but rather some subset of it (which we call “interval valuations”). Though this idea
seems at first sight very different from our generalized valuations—that assign
sieves to propositions “A ∈ 1”—the two types of valuations turn out to be closely
related. In fact, there is a natural correspondence between them that uses the notion
of the supportof a state for a quantity (Section 3). This correspondence is best
expressed for the case ofV than forO since, by using von Neumann algebras
as the base category, various measure-theoretic technicalities can be immediately
dealt with. However, we shall also discuss the case ofO, as it is heuristically
valuable.

In Section 4, we describe how if one starts with a yet more general notion of an
interval valuation (i.e., one that does not appeal to the notion of support), one sees
that our interval valuations based on the notion of support (and correspondingly,
our sieve-valued valuations) are a simple way to secure certain natural properties
of valuations, such as monotonicity.

4 There is also a closely analogous presheaf—the dual presheafD—that is defined on the categoryW
of Boolean subalgebras of the latticeL(H) of projectors onH; and the Kochen–Specker theorem
is also equivalent to the nonexistence of any global elements ofD (cf. Butterfield and Isham, 1999;
Isham and Butterfield , 1998). But we shall not discussW further in this paper.
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2. REVIEW OF OUR FRAMEWORK

2.1. The CategoriesO andV
We will first summarize the definitions given in the previous papers

(Butterfield and Isham, 1999; Hamiltonet al., 2000; Isham and Butterfield, 1998),
of the categoriesO andV that are defined in terms of the operators on a Hilbert
space, and over which various presheaves may be usefully constructed.

The objects of the categoryO are defined to be the bounded self-adjoint
operators on the Hilbert spaceH of some quantum system. A morphismfO : B̂→
Â is defined to exist ifB̂ = f (Â) for some Borel functionf . On the other hand,
the objectsV of the categoryV are defined to be the commutative von Neumann
subalgebras of the algebraB(H) of bounded operators onH. The morphisms in
V are the subset inclusions—so ifV2 ⊆ V1, we have a morphismi V2V1 : V2→ V1.
Thus the objects in the categoryV form a poset.

The categoryV gives the most satisfactory description of the ordering struc-
ture of operators. Some reasons for this were discussed in Section 2.1 of Hamilton
et al.(2000). In particular, each von Neumann algebra contains the spectral projec-
tors of all its self-adjoint members; so in a senseV subsumes bothO andW (the
category of Boolean subalgebras of the latticeL(H)). More important in this paper
is the fact that inV issues about measure theory and spectral theory are easier to
treat than they are inO; though we will for heuristic reasons keepO in play.

2.2. The Spectral Presheaf onO andV
The spectral presheaf6 overO was introduced in Isham and Butterfield

(1998). It assigns to each objectÂ inO its spectrumσ (Â) as a self-adjoint operator:
thus6(Â) := σ (Â) ⊆ R. And it assigns to each morphismfO : B̂→ Â (so that
B̂ = f (Â)), the corresponding map fromσ (Â) to σ (B̂) : 6( fO) : σ (Â→ σ (B̂),
with λ ∈ σ (Â) 7→ f (λ) ∈ σ (B̂).

We now define the corresponding presheaf overV. We recall (see, e.g.,
Kadison and Ringrose (1983)) that the spectrumσ (V) of a commutative von
Neumann algebraV is the set of all multiplicative linear functionalsκ : V → C;
these are also the pure states ofV . Such a functional assigns a complex number
κ(Â) to each operator̂A ∈ V , such thatκ(Â) κ(B̂) = κ(ÂB̂). If Â is self-adjoint
thenκ(Â) is real and belongs to the spectrumσ (Â) of Â.

Furthermore,σ (V) is a compact Hausdorff space when it is equipped with
the weak-∗ topology, which is defined to be the weakest topology such that, for
all Â ∈ V , the mapÃ : σ (V)→ C defined by

Ã(κ) := κ(Â), (2.1)

is continuous. The functioñA defined in Eq. (2.1) is known as theGelfand trans-
formof Â, and the spectral theorem for commutative von Neumann algebras asserts
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that the mapÂ 7→ Ã is an isomorphism ofV with the algebraC(σ (V)) of complex-
valued, continuous functions onσ (V). The spectral presheaf is then defined as
follows.

Definition 2.1. The spectral presheaf overV is the contravariant functor6 :
V → Set defined as follows:

• On objects:6(V) := σ (V), whereσ (V) is the spectrum of the commutative
von Neumann algebraV , i.e. the set of all multiplicative linear functionals
κ : V → C.
• On morphisms: If i V2V1 : V2→ V1, so that V2 ⊆ V1, then 6(i V2V1) :
σ (V1)→ σ (V2) is defined by6(i V2V1)(κ) := κ|V2, whereκ|V2 denotes the
restriction of the functionalκ : V1→ C to the subalgebraV2 of V1.

When restricted to the self-adjoint elements ofV , a multiplicative linear
functionalκ satisfies all the conditions of avaluation, namely:

1. The (real) valueκ(Â) of Â must belong to the spectrum ofÂ;
2. The functional composition principle (FUNC)

κ(B̂) = f (κ(Â)) (2.2)

holds for any self-adjoint operatorŝA, B̂ ∈ V such thatB̂ = f (Â).

It follows that the Kochen–Specker theorem can be expressed as the statement that
(for dimH > 2) the presheaf6 overV has no global elements. Indeed, a global
element of6 overV would assign a multiplicative linear functionalκ : V → C
to each commutative von Neumann algebraV in V in such a way that these
functionals “match up” as they are mapped down the presheaf: i.e., the functional
κ on V would be obtained as the restriction toV of the functionalκ1 : V1→ C
for anyV1 ⊇ V . So such a global element would yield a global valuation, obeying
FUNCEq. (2.2), on all the self-adjoint operators: a valuation that is forbidden by
the Kochen–Specker theorem.

2.3. The Coarse-Graining Presheaf onO andV
Our chief concern is withgeneralizedvaluations, which arenot excluded

by the Kochen–Specker theorem. These are given by first introducing another
presheaf—thecoarse-graining—presheaf, which gives us a structured collection
of propositions about the values of quantities. We summarize the ideas behind the
coarse-graining presheaf in this subsection and the next. Then we use the topos-
theoretic idea of the subobject classifier to assign sieves as partial, and contextual,
truth values to these propositions (Section 2.5).

We begin by representing the proposition “A ∈ 1”—that the value of the
physical quantityA lies in the Borel set1 ⊆ σ (Â) ⊂ R—by the corresponding
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spectral projector forÂ, Ê[ A ∈ 1] (as we will see below, and as discussed in
detail in Hamiltonet al.(2000), Section 3, this last statement needs to be qualified
as regardsV). The coarse-graining presheaf is then defined so as to reflect the
behavior of these propositions as they are mapped between the different stages
of the base category. Specifically, the coarse-graining presheaf overO is de-
fined ((Isham and Butterfield, 1998), Definition 4.3) as the following contravariant
functorG : O→ Set:

• On objects inO : G(Â) := WA, whereWA is the spectral algebra of̂A (i.e.,
the set of all spectral projectors for̂A);
• On morphisms inO : If fO : B̂→ Â (i.e., B̂ = f (Â)), then G( fO) :

WA→ WB is defined as

G( fO)(Ê[ A ∈ 1]) := Ê[ f (A) ∈ f (1)]. (2.3)

Note that the action of this presheaf coarsens propositions (and their associated
projectors) in the sense that, in the partial-ordering of the lattice of projectors,
Ê[ f (A) ∈ f (1)] ≥ Ê[ A ∈ 1], and where the strict inequality arises whenf is
not injective.

One subtlety is that for1 a Borel subset ofσ (Â), f (1) need not be Borel.
This is resolved in Isham and Butterfield (1998), Theorem (4.1), by using the fact
that if Â has a purely discrete spectrum (so that, in particular,f (1) is Borel) then

Ê[ f (A) ∈ f (1)] = inf{Q̂ ∈ Wf (A) ⊆ WA | Ê[ A ∈ 1] ≤ Q̂} (2.4)

where the infimum of projectors is taken in the (complete) lattice structure of all
projectors onH. This motivated the use in Isham and Butterfield (1998) of Eq. (2.4)
to definethe coarse-graining operation for a general self-adjoint operatorÂ: i.e.,
the projection operator denoted byÊ[ f (A) ∈ f (1)] is definedusing the right hand
side of Eq. (2.4).

This infimum construction is used again in our definition ofG overV. Specif-
ically, we define:

Definition 2.2. The coarse-graining presheaf overV is the contravariant functor
G : V → Set defined as follows:

• On objects:G(V) is the latticeL(V) of projection operators in the com-
mutative von Neumann algebraV .
• On morphisms: ifi V2V1 : V2→ V1 thenG(i V2V1) : L(V1)→ L(V2) is the

coarse-graining operation defined onP̂ ∈ L(V1) by

G
(
i V2V1

)
(P̂) := inf

{
Q̂ ∈ L(V2) | P̂ ≤ i V2V1(Q̂)

}
(2.5)

where the infimum exists becauseL(V2) is complete.
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The spectral and coarse-graining presheaves will play a central role in the
subsequent discussion. First, however, we recall that the interpretation of the
propositions “A ∈ 1” is more subtle for the base categoryV than forO (as dis-
cussed in Butterfield and Isham (1999) and Isham and Butterfield (1998)). For we
interpret a projector̂P ∈ L(V) as a proposition about the entire stageV1. Formally,
we can make this precise in terms of the spectrum of thealgebra V. That is to say,
we note that:

• Any projectorP̂ ∈ L(V) corresponds not only to a subset of the spectrum of
individual operatorsÂ ∈ V (where P̂ ∈ WA so P̂ = Ê[ A ∈ 1] for some
1 ⊂ σ (Â)), but also to a subset of the spectrum of the whole algebra
V , namely, those multiplicative linear functionalsκ : V → C such that
κ(P̂) = 1. It will be convenient in Section 2.4 et seq. to have a notation for
this subset, so we defineV(P̂) := {κ ∈ σ (V) : V → C | κ(P̂) = 1}.
• Coarse-graining respects this interpretation in the sense that if we interpret

P̂ ∈ L(V1) as a proposition about the spectrum of the algebraV1, then
the coarse-graining of̂P to someV2 ⊂ V1, given by inf{Q̂ ∈ L(V2) | P̂ ≤
i V2V1(Q̂)} is a member ofL(V2), and so can be interpreted as a proposition
about the spectrum of the algebraV2.

This treatment of propositions as concerning the spectra of commutative von
Neumann algebras, rather than the spectra of individual operators, amounts to
the semantic identification of all propositions in the algebra corresponding to the
same mathematical projector. Thus when we speak of a proposition “A ∈ 1” at
some stageV , with Â ∈ V, we really mean the corresponding proposition about
the spectrum of the whole algebraV defined using the projector̂E[ A ∈ 1]. In
terms of operators, the proposition “A ∈ 1” is augmented: it can be thought
of as the family of propositions “B ∈ 1B” about operatorsB̂ ∈ V such that
the projectorÊ[ A ∈ 1] belongs to the spectral algebra ofB̂, and Ê[ A ∈ 1] =
Ê[B ∈ 1B].

2.4. G as the Power Object ofΣ

In any topos, any objectX has an associated “power object”P X := ÄX,
which is the topos analogue of the power set of a set. Accordingly, in a topos of
presheaves, any presheafX has a “power presheaf”P(X). This presheafP(X)
assigns to each stageA of the base category the power setP(X(A)) of the set
X(A) assigned byX; and it assigns to each morphismf : B→ A in the base-
category, the set-function fromP(X(A)) to P(X(B)) induced in the obvious way
from X( f ) : X(A)→ X(B). That is to say,P(X)( f ) : P(X(A))→ P(X(B)) is
defined by

P(X)( f ) : 1 ∈ P(X(A)) 7→ (X( f ))(1) ∈ P(X(B)). (2.6)
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But one can also consider more restricted power presheaves, whose assign-
ment at a stageA contains only certain subsets of the setX(A). Indeed, in Isham
and Butterfield (1998), Section 4.2.3, it was noted that the coarse-graining presheaf
G overO was essentially the same as the presheafB6 overO, which is defined
as assigning to eacĥA in O the Borel subsets of the spectrum ofÂ. The presheaf
B6 onO was essentially the Borel power object of6, containing those subob-
jects of6 which are formed of Borel sets of spectral values, with a projector
Ê[ A ∈ 1] ∈ G(Â) corresponding to the Borel subset1 ⊂ 6(Â).

This connection between projectors and subsets of spectra—i.e., the fact that
G is essentially the same as a restricted power presheaf of6—also holds in the
case ofV, as follows.

A projection operator̂P ∈ V has as its Gelfand transform̃P the characteristic
function of a subset of the spectrum ofV , namely the setV(P̃) of multiplicative
linear functionalsκ onV such thatκ(P̂) = 1; in other words,P̃ = χV(P̂). This set
is both closed and open (clopen) in the compact Hausdorff topology ofσ (V). Con-
versely, each clopen subset ofσ (V) corresponds to a projection operatorP̂ whose
representative functioñP onσ (V) is the characteristic function of this subset.

So in analogy withB6 onO, we define a similar presheaf onV, viz. the
clopen power object of6, which we will denote Clo6:

• On objects: Clo6(V) is defined to be the set of clopen subsets of the
spectrumσ (V) of the algebraV . Each such clopen set is the setV(P̂) of
multiplicative linear functionalsκ such thatκ(P̂) = 1 for some projector
P̂ ∈ V . So Clo6(V) = {V(P̂) | P̂ ∈ L(V)}.
• On morphisms: forV2 ⊂ V1, we define in accordance with Eq. (2.6)

Clo6
(
i V2V1

)
(V1(P̂)) := Clo6

(
i V2V1

)
({κ ∈ σ (V1) | κ(P̂) = 1})

= {λ ∈ σ (V2)|λ = κ|V2 for someκ ∈ V1(P̂)}
(2.7)

The right hand side of Eq. (2.7) is clearly a subset of{λ ∈ σ (V2) | λ(G(i V2V1)
(P̂)) = 1}. But the converse inclusion also holds: i.e., anyλ ∈ σ (V2) such that
λ(G(i V2V1)(P̂)) = 1 is the restriction toV2 of someκ ∈ σ (V1) such thatκ(P̂) = 1.
This follows from Theorem 4.3.13 (p. 266) of Kadison and Ringrose (1983).5 This
theorem concerns extending states from a subspace of aC∗-algebra to the whole
C∗-algebra. But using the fact that the set of pure states of a commutativeC∗-
algebra is its spectrum, the theorem, especially part (iv), implies thatλ ∈ σ (V2)
can be extended to aκ ∈ σ (V1), with κ chosen so thatκ(P̂) = c for anyc such that:

c ≥ sup{λ(Ê) | Ê is a projector inV2 andÊ ≤ P̂} (2.8)

c ≤ inf{λ(Ê) | Ê is a projector inV2 and P̂ ≤ Ê} (2.9)

5 We thank Hans Halvorson for this reference.
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For our case ofc = 1, the first constraint Eq. (2.8) is trivial. And the infimum in
the second constraint, Eq. (2.9), is 1; for the fact that (G(i V2V1)(P̂)) ≤ Ê for all
Ê ∈ V2 such thatP̂ ≤ Ê implies thatλ(Ê) = 1 for all Ê ∈ V2 such thatP̂ ≤ Ê.
Soλ has an extensionκ such thatκ(P̂) = 1.

This result, that{λ ∈ σ (V2) | λ = κ|V2 for someκ ∈ V1(P̂)} = {λ ∈ σ (V2) |
λ(G(i V2V1)(P̂)) = 1}, implies thatG and Clo6 are isomorphic in the topos of
presheaves onV. Here isomorphism means as usual that: (i) there is a natural
transformationN from G to Clo6, i.e., a family of mapsNV : G(V)→ Clo6(V)
for each stageV in V such that the diagram forV2 ⊆ V1:

Clo6(V1)
restriction−→ Clo6(V2)

NV1−→ NV2

G(V1) G(iV2 V1 )−→

−→

G(V2)
(2.10)

commutes; and (ii)N is invertible.
Such a natural transformation is provided byNV : P̂ ∈ G 7→ V(P̂) ∈

Clo6(V). With this definition ofN, the requirement that the diagram in (2.10)
commutes is

V1(P̂)|V2 = V2
[
G
(
i V2V1

)
(P̂)

]
(2.11)

which is just the result that{λ ∈ σ (V2) | λ = κ|V2 for someκ ∈ V1(P̂)} = {λ ∈
σ (V2) | λ(G(i V2V1)(P̂)) = 1}. This natural transformationN is invertible since any
clopen set∈ Clo6(V) is of the formV(P̂) for a unique projector̂P ∈ G(V).

To sum up, we can think ofG onV as being the clopen power object of6 on
V. This isomorphism will be important in Section 3.

2.5. Sieve-Valued Generalized Valuations

We now describe how to use the topos-theoretic idea of a subobject classifier
to assign sieves as partial and contextual truth values to the propositions provided
by the coarse-graining presheaf (propositions that, forV as base category, are
“augmented” in the sense discussed at the end of Section 2.3).

As mentioned in Section 1, thesesieve-valued valuations have certain prop-
erties which strongly suggest that they are appropriate generalizations of the usual
idea of a valuation. In particular, they satisfy a functional composition principle
analogous to Eq. (2.2). Furthermore, these valuations can be motivated from vari-
ous different perspectives, discussed in Butterfield (2001), Butterfield and Isham
(1999), and Isham and Butterfield (1998). The main motivation, which applies
equally to eitherO or V as base category, lies in the facts that:

1. For any base-category,C say, the subobject classifierΩ in the topos of
presheaves SetC

op
is the presheaf that (i) assigns to eachA in C the set
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Ω(A) of all sieves onA, where a sieve onA is a set of morphisms inC with
codomainA that is “closed under composition,” i.e. ifS is sieve onA and
f : B→ A is a morphism inS, then for anyg : C→ B, the composite
f ◦ g : C→ A is in S; and (ii) assigns to each morphismf : B→ A
in C, the pullback map on sievesΩ( f ) : Ω(A)→ Ω(B); (cf. Isham and
Butterfield (1998), Appendix).

We note that the base-category of most interest for us,V, is a poset;
and since in a poset there is at most one morphism between objects, sieves
can be identified with lower sets in the poset. Thus onV, the subobject
classifierΩ is as follows:
• On objects:Ω(V) is the set of sieves inV onV . We recall thatΩ(V) has

(i) a minimal element, the empty sieve, 0V = ∅, and (ii) a maximal ele-
ment, the principal sieve, trueV = ↓V := {i V ′V : V ′ → V | V ′ ⊆ V} =
{V ′ | V ′ ⊆ V}.
• On morphisms:Ω(i V2V1) : Ω(V1)→ Ω(V2) is the pull-back of the sieves

in Ω(V1) alongi V2V1 defined by:

Ω(i V2V1)(S) = i ∗V2V1
(S)

:= {i V3V2 : V3→ V2 | i V2V1 ◦ i V3V2 ∈ S
}

(2.12)

= {V3 ⊂ V2 | V3 ∈ S} (2.13)

for all sievesS∈ Ω(V1).
2. In any topos of presheaves SetCop

, morphisms from an arbitrary presheaf
X to the subobject classifierΩ generalize the characteristic functionsχ
in set theory that map an arbitrary setX to the two classical truth values
{0, 1}. In particular, just as the characteristic functionχK : X→ {0, 1}
for a given subsetK ⊆ X encodes the answers to the questions for each
x ∈ X, “x ∈ K?,” so also the morphismχK : X → Ω for a given sub-
object (subpresheaf)K of X encodes the answers to the questions for each
stageA in the base-category, and eachx ∈ X(A), “at what stage does a
‘descendant’ ofx enterK?.”

Thus the sieves can be considered as generalized—more precisely,
partial and contextual—truth values.

The actual definition of a sieve-valued generalized valuation onV is as fol-
lows. (The definition onO can be obtainedmutatis mutandis.)

Definition 2.3. A sieve-valued generalized valuation on the categoryV in a quan-
tum theory is a collection of mapsνV : L(V)→ Ω(V), one for each “stage of truth”
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V in the categoryV, with the following properties:

(i) Functional composition:

For anyP̂ ∈ L(V) and anyV ′ ⊆ V, so thati V ′V : V ′ → V, we have

νV ′ (G(i V ′V (P̂)) = i ∗V ′V (νV (P̂)) (2.14)

wherei ∗V ′V is the pull-back of the sieves inΩ(V) alongi V ′V defined by

Ω(i V ′V )(S) := i ∗V ′V (S) := {i V ′′V ′ : V ′′ → V ′ | i V ′V ◦ i V ′′V ′ ∈ S}
(2.15)

for all sievesS∈ Ω(V).
(ii) Null proposition condition:

νV (0̂)= 0V (2.16)

(iii) Monotonicity:

If P̂, Q̂ ∈ L(V) with P̂ ≤ Q̂, then νV (P̂) ≤ νV (Q̂). (2.17)

We may wish to supplement this list with:
(iv) Exclusivity:

If P̂, Q̂ ∈ L(V) with P̂Q̂ = 0̂ and νV (P̂) = trueV ,

thenνV (Q̂) < trueV (2.18)

and
(v) Unit proposition condition:

νV (1̂)= trueV . (2.19)

Note that in writing Eq. (2.14), we have employed Definition 2.2 to specify
the coarse-graining operation in terms of an infimum of projectors, as motivated
by Theorem 4.1 of Isham and Butterfield (1998).

The topos interpretation of these generalized valuations remains as discussed
in Section 4.2 of Isham and Butterfield (1998) and Section 4 of Butterfield and
Isham (1999). Adapting the results and discussion to the categoryV, we have in
particular the result that because of theFUNC condition, Eq. (2.14), the maps
Nν

V : L(V)→ Ω(V) defined at each stageV by:

Nν
V (P̂) = νV (P̂) (2.20)

define a natural transformationNν fromG toΩ. SinceΩ is the subobject-classifier
of the topos of presheaves, SetVop

, these natural transformations are in one-to-one
correspondence with subobjects ofG; so that each generalized valuation defines
a subobject ofG. We will pursue this topic in more detail in Section 3.
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2.6. Sieve-Valued Valuations Associated with Quantum States

We recall (e.g., (Isham and Butterfield, 1998), Definition 4.5) that each quan-
tum stateρ defines a sieve-valued generalized valuation onO in a natural way by

νρ(A ∈ 1) := { fO : B̂→ Â | Prob(B ∈ f (1); ρ) = 1}
= { fO : B̂→ Â | tr(ρ Ê[B ∈ f (1)]) = 1}. (2.21)

Thus the generalized valuation associates to the proposition “A ∈ 1” at stageÂ
all arrows inO with codomainÂ along which the projector corresponding to
the proposition coarse-grains to a projector which is “true” in the usual sense
of having a Born-rule probability equal to 1, which in our framework corre-
sponds to the “totally true” truth value, the principal sieve↓B̂ at stageB̂. This
construction is easily seen to be a sieve, and satisfies conditions analogous to
Eqs. (2.14)–(2.19) for a generalized valuation onV ((Isham and Butterfield, 1998),
Section 4.4).

We also recall that there is a one-parameter family of extensions of these
valuations, defined by relaxing the condition that the proposition coarse-grains
along arrows in the sieve to a “totally true” projector. That is to say, we can define
the sieve

νρ ,r (A ∈ 1) := { fO : B̂→ Â | Prob(B ∈ f (1); ρ) ≥ r }
= { fO : B̂→ Â | tr(ρ Ê[B ∈ f (1)]) ≥ r } (2.22)

where the proposition “A ∈ 1” is only required to coarse-grain to a projector that
is true with some probability greater thanr , where 0.5≤ r ≤ 1.

Furthermore, if one drops the exclusivity condition, one can allow probabil-
ities less than 0.5, i.e. 0< r < 0.5.

Similarly, each quantum stateρ defines a sieve-valued generalized valua-
tion onV in a natural way. Recall from Section 2.3 that we interpret a projector
P̂ ∈ L(V) as an “augmented” proposition about the spectrum of the commutative
subalgebraV , rather than about the value of just one operator. Thus we define a
sieve-valued generalized valuation associated with a quantum stateρ as follows:

Definition 2.4. The sieve-valued valuationνρV1
of a projectorP̂ ∈ V1 associated

with a quantum stateρ is defined by:

ν
ρ

V1
(P̂) := {i V2V1 : V2→ V1 | ρ

[
G
(
i V2V1

)
(P̂)

] = 1
}
. (2.23)

This assigns as the truth-value at stageV1 of a projector P̂ ∈ L(V1), a sieve
on V1 containing (morphisms toV1 from) all stagesV2 at which P̂ is coarse-
grained to a projector which is “totally true” in the usual sense of having Born-rule
probability 1.
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One readily verifies that Eq. (2.23) defines a generalized valuation in the sense
of Definition 2.3. (The verification is the same,mutatis mutandis, as for generalized
valuations onO, given in Section 4.4 of Isham and Butterfield (1998)).

Again, we can obtain a one-parameter family of such valuations by introduc-
ing a probabilityr :

ν
ρ ,r
V1

(P̂) := {i V2V1 : V2→ V1 | ρ
[
G
(
i V2V1

)
(P̂)

] ≥ r
}
. (2.24)

2.7. Interval Valuations

The sieve-valued generalized valuations onO andV discussed in Sections 2.5
and 2.6 (and their analogues onW, discussed in Butterfield and Isham (1999) and
Isham and Butterfield (1998)) are one way of assigning a generalized truth value
to propositions in a way that is not prevented by the Kochen–Specker theorem. We
now turn to relating these to another notion of “generalized valuation,” which we
call “interval valuations” since the intuitive idea is to assign some interval of real
numbers to each operator. Note that here “interval” is used loosely: it means just
some (Borel) subset ofR, not necessarily a connected subset; and more generally,
it means just some (Borel) subset of the spectrum one is concerned with (at a given
stage of the base-category).

In Section 4 of Hamiltonet al.(2000), we showed how this intuitive idea can
be developed in various ways, even for a single base-category. That discussion
focussed onV, and described how a sieve-valued generalized valuation onV—in
particular one associated with a quantum state—induces an “interval valuation”
in various senses of the phrase. These various senses differ about whether to take
the assigned intervals at the various stages to define:

(i) A subobject of6, or
(ii) A global element ofG, or

(iii) A subobject ofG.

But these different senses of “interval valuation” are similar in that all are defined
in terms of the set of “totally true” projectors at each stageV of the base-cateogory
V. Thus for any sieve-valued valuationν, we defined thetruth set

Tν(V) := {P̂ ∈ L(V) | νV (P̂) = trueV } (2.25)

so that, in particular, for the valuationνρ associated with the quantum stateρ we
have

Tρ(V) := {P̂ ∈ L(V) | ρ(P̂) = 1}. (2.26)

We used these truth sets in two ways. First, we defined interval valuations
that are subobjects of6 by assigning to each stageV , the subset of the spectrum
σ (V) consisting of all functionals that “make certain” all members of the truth set
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Tν(V). That is, for any sieve-valued valuationν, we assign toV the set:

I ν(V) = {κ ∈ σ (V) | κ(P̂) = 1, ∀P̂ ∈ Tν(V)} =
⋂

P̂∈Tν (V)

V(P̂). (2.27)

This assignment gives a subobject of6 (meaning that ifV2 ⊆ V1, thenI ν(V2) ⊇
I ν(V1) |V2) provided the following condition (Eq. (4.9) of Hamiltonet al. (2000))

If V2 ⊆ V1 then infTν(V2) ≥ inf Tν(V1) (2.28)

is satisfied—which it always is for the valuationsνρ associated with quantum states
ρ because for these valuationsTνρ (V2) ⊆ Tνρ (V1). It is also satisfied for the “prob-
ability r ” quantum valuationsνρ ,r , i.e. with truth sets defined using Eq. (2.24).6

Second, we defined interval valuations that are global elements ofG by taking
the infima of these truth sets (using the fact thatL(V) is a complete lattice) to define
what we called thesupport(of the valuation, or the quantum state) at each stageV :

s(ν, V) := inf Tν(V) = inf{P̂ ∈ L(V) | νV (P̂) = trueV } (2.29)

so that in particular, for the valuationνρ

s(ρ , V) := inf Tρ(V) = inf{P̂ ∈ L(V) | ρ(P̂) = 1}. (2.30)

An example of an interval valuation that is a global element ofG is given
by assigning to each stageV , the support at that stage,s(ν, V) or s(ρ , V). This
assignment gives a global element ofG provided that supports (infima of truth
sets) “match up” under coarse-graining in the usual sense that

If V2 ⊆ V1, then inf{P̂ ∈ Tν(V2)} =: s(ν, V2)

= G
(
i V2V1

)
(inf{P̂ ∈ Tν(V1)})

= G
(
i V2V1

)
(s(ν, V1)). (2.31)

This condition is satisfied for the valuationsνρ associated with quantum states
ρ (but not for the “probability r ” quantum valuationsνρ ,r , i.e. with supports
s(νρ ,r , V) defined on analogy with Eq. (2.29) but using Eq. (2.24)).

We note that the notion of an interval valuation that is a global element ofG
is stronger than the notion of a subobject of6 (treated in case (i) above) in the
sense that any global element ofG defines a subobject of6 but not vice versa.
Thus any global elementγ of G—i.e. an assignmentγ such that ifV2 ⊂ V1 then
γ (V2) = G(i V2V1)(γ (V1))—defines a subobjectI γ of 6 by

I γ (V1) := V1(γ (V1)) = {κ ∈ σ (V1) | κ(γ (V1)) = 1} (2.32)

6 Eq. (2.27) shows how “interval” is here used abstractly: an algebraV is assigned a subset of its
spectrum, i.e. a set of multiplicative linear functionals onV which corresponds to a subset of the
spectrum of each operator in the algebra.
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sinceκ(P̂) = 1 impliesκ(G(i V2V1)(P̂)) = 1, so thatI γ (V1) |V2 ⊆ I γ (V2). We can
also put this in terms of the isomorphismN in Section 2.4 betweenG and Clo6
whose component mapsNV : P̂ ∈ G(V) 7→ V(P̂) ∈ Clo6 carry the global ele-
mentγ of G into a global element of Clo6, i.e. a subobject of6.

3. THE CORRESPONDENCE BETWEEN INTERVALS AND SIEVES

3.1. Prospectus

So much by way of review. In the rest of this paper we shall report some
new results about the relation between sieve-valued valuations and interval val-
uations; where both of these notions will be understood more generally than in
Sections 2.5–2.7. However, in this section (though not Section 4) all the interval
valuations to be discussed will be like those in Section 2.7, in the sense that they
will be based on the notion of truth sets and associated ideas (especially the infima
of truth sets, i.e., supports).7

In this section, we will discuss a kind of correspondence between sieve-
valued valuations and interval valuations. So despite the marked differences be-
tween sieve-valued valuations and interval valuations—for example, inV we see
projectors or propositionsversusalgebras as arguments, and sievesversussets of
linear functionals as values—it turns out that they correspond. Indeed, in a sense
they mutually determine each other. We have already seen in Section 2.7 how
sieve-valued valuations determine interval valuations, via the idea of truth sets.
The converse determination, of sieve-valued valuations by interval valuations, is
simplest for the case where the interval valuations are global elements ofG; i.e. for
case (ii) of Section 2.7, where we use not just truth sets, but their infima,supports.
We shall present this in Section 3.2.1.

Then in Section 3.2.2 we shall discuss case (i) in Section 2.7, where the
interval valuations are subobjects of6.

In both this section and the next, our discussion will again concentrate onV
since, as mentioned in the Introduction, usingV avoids measure-theoretic diffi-
culties about the spectra of operators (and functions of them) which arise inO.
But since our results aboutV are rather abstract, it will be heuristically helpful
to report the corresponding claims aboutO; i.e. to state what our results imply
about presheaves overO at those stages (i.e. operators) ofO that do not have these
measure-theoretic difficulties. (These stages will include all operators with a pure
discrete spectrum.) So we report these corresponding claims aboutO in Section 3.3.

7 So as in Hamiltonet al. (2000), we are not concerned here to appeal to interval valuations to solve
the measurement problem, namely by assigning intervals to some or all quantities that are “narrow”
enough to give definite results to quantum measurements and yet “wide” enough to avoid the Kochen–
Specker and other “no-go” theorems. For a recent discussion of this strategy, as it occurs within the
modal interpretation, cf. (Vermaas, 2000).
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3.2. The Correspondence inV
3.2.1. The Case of Global Elements ofG

The correspondence between sieve-valued valuations and interval valuations
is simplest for the case where the interval valuations are global elements ofG. In
each “direction,” there is a natural and simple sufficient condition for correspon-
dence, satisfied by “most” of the valuations discussed in Sections 2.5–2.7. More
precisely: given a sieve-valued valuationα, and the corresponding interval valu-
ation,sα say, thatα defines in terms of supports, then there is a simple sufficient
condition ((i) below) forα to equal a valuation naturally defined bysα which takes
sets of morphisms as values. And in the other direction: given an interval valuation
a and the corresponding valuation,αa say, thata naturally defines and which takes
sets of morphisms as values, thena equals the interval valuation defined in terms
of the supports ofαa; and there is a simple sufficient condition ((ii) below) for
αa to be sieve-valued. In fact, condition (ii) is that supports should form a global
element ofG.

But before stating these results it is illuminating to show that, taken together,
conditions (i) and (ii) are also sufficient to imply that a valuation is an assignment
of sieves, and also obeysFUNC. This claim is made precise in Theorem 3.1. It
shows that conditions (i) and (ii) taken together are sufficient for an assignmentα

to each stageV in V and eachP̂ ∈ G(V) := L(V) of a set of morphismsαV (P̂) ⊆
{i V ′V : V ′ → V}, to satisfy three conditions. Namely, the conditions: (a) thatα is
sieve-valued (i.e. eachα(V) is a sieve onV); (b) thatα obeysFUNC; and (c) that
α obeys a characterization that encapsulates the correspondence between sieve-
valued valuations and interval valuations. (This characterization will also lead in
to the discussion in Section 4.)

We begin by noting that for any suchα, i.e. any such assignmentsαV (P̂) ⊆
{i V ′V : V ′ → V}, we can define truth sets and (sinceL(V) is complete) supports,
just as in Eqs. (2.25) and (2.29). So we write these asTα(V) ands(α, V) respec-
tively. Similarly, for any suchα, the condition that supports “match up” under
coarse-graining, makes sense; cf. Eq. (2.31), substitutingα for ν.

Theorem 3.1. Let α be an assignment to each stage V inV and eachP̂ ∈
G(V) := L(V) of a set of morphismsαV (P̂) ⊆ {i V ′V : V ′ → V} with codomain
V . Let Tα(V) and s(α, V) be defined as in Eqs. (2.25) and (2.29) respectively (just
substitutingα for ν). Suppose thatα obeys:

(i) If V2 ⊆ V1 and P̂ ∈ L(V1), then iV2V1 : V2→ V1 ∈ αV1(P̂) iff s(α, V2) ≤
G(i V2V1)(P̂);

(ii) Supports give a global element ofG, i.e. they match up under coarse-
graining, in the sense of Eq. (2.31), i.e.,

If V2 ⊆ V1, s(α, V2) = G
(
i V2V1

)
(s(α, V1)). (3.1)
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Then:

(a) EachαV (P̂) is a sieve;
(b) α obeys FUNC, as in Eq. (2.14), i.e.,

αV2

(
G
(
i V2V1

)
(P̂)

) = i ∗V2V1

(
αV1(P̂)

)
(3.2)

(c) α obeys

αV1(P̂) = {i V2V1 : V2→ V1 | G
(
i V2V1

)
(s(α, V1)) ≤ G

(
i V2V1

)
(P̂)

}
.

(3.3)

Proof:

(a): Giveni V2V1 ∈ αV1(P̂), the condition (i) and the monotonicity ofG(i V2V1)
imply that for anyV3 ⊆ V2, G(i V3V2)(s(α, V2)) ≤ G(i V3V1)(P̂). But by
(ii), G(i V3V2)(s(α, V2)) = s(α, V3); so that by (i),i V3V1 ∈ αV1(P̂).

(b): Condition (i) implies that αV2(G(i V2V1)(P̂)) = {i V3V2 : V3→ V2 |
s(α, V3) ≤ G(i V3V1)(P̂)} and that i ∗V2V1

(αV1(P̂)) := {i V3V2 : V3→ V2 |
i V2V1 ◦ i V3V2 ∈ αV1(P̂)} = {i V3V2 : V3→ V2 | s(α, V3) ≤ G(i V3V1)(P̂)}.
(So result (b) depends only on the condition (i)).

(c): Immediate: apply (ii) i.e., Eq. (3.1) to the condition in (i) thats(α, V2) ≤
G(i V2V1)(P̂). QED.

In particular, the sieve-valued valuations associated with quantum states (for
probability 1, but notr with 0≤ r < 1) obey the conditions of Theorem 3.1. For
we noted in Section 4.3 of Hamiltonet al. (2000) that (ii) i.e. Eq. (2.31), holds
for these valuations; and (i) holds trivially for them, sinceρ(G(i V2V1)(P̂)) = 1
iff s(ρ , V2) ≤ G(i V2V1)(P̂).

We turn to describing how conditions (i) and (ii) are, respectively, natu-
ral sufficient conditions for: (a) a sieve-valued valuation to be determined by an
interval-valued valuation that it itself determines; and (b) an interval valuation to
be determined by a sieve-valued valuation that it itself determines.

First, supposeα is an assignment to each stageV in V and eacĥP ∈ G(V) :=
L(V) of a sieve onV . We can define truth sets and (sinceL(V) is complete)
supports, as in Eqs. (2.25) and (2.29). Let us write these asTα(V) and sα(V)
respectively. Then we define a valuation with sets of morphisms as values, in
terms of thesα(V), by

αsα
V1

(P̂) := {i V2V1 : V2→ V1 | sα(V2) ≤ G
(
i V2V1

)
(P̂)

}
(3.4)

and ask: doesαsα
V1

(P̂) = αV1(P̂)? The answer is trivially: “Yes” if and only ifα
obeys condition (i) of Theorem 3.1. (We note incidentally that this argument,
including its definition of truth sets and supports, does not require that the given
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α assign sieves. It is enough, as in Theorem 3.1, thatα be an assignment to each
stageV in V and eachP̂ ∈ G(V) := L(V) of a set of morphisms with codomain
V : the conclusion, thatαsα = α iff α obeys condition (i), is unaffected.)

Second, supposea is an assignment at each stageV in V of an element of
G(V) := L(V). (We do not for the moment require thata define a global element
of G.) Then we define a valuationαa, with sets of morphisms as values, on allP̂
in eachG(V) := L(V), in terms ofa, as follows:

αa
V1

(P̂) := {i V2V1 : V2→ V1 | a(V2) ≤ G
(
i V2V1

)
(P̂)

}
. (3.5)

It follows that the supports(αa, V), defined in the usual way (cf. Eq. (2.29)) is
equal toa(V). That is, suppose we define truth sets and supports forαa in the usual
way; cf. Eqs. (2.25) and (2.29). Then note that

P̂ ∈ Tαa
(V) iff a(V) ≤ G(i V V)(P̂) = P̂, (3.6)

so thats(αa, V) := inf Tαa
(V) = a(V).

But under what conditions isαa sieve-valued (i.e.αa
V1

(P̂) is always a sieve)?
In fact, the condition (ii) in Theorem 3.1—i.e. the condition thata defines a global
element ofG—is a natural sufficient condition for this. For suppose thati V2V1 ∈
αa

V1
(P̂), i.e. a(V2) ≤ G(i V2V1)(P̂), and pick anyi V3V2 : V3→ V2. SinceG(i V3V2)

is monotonic, we getG(i V3V2)a(V2) ≤ G(i V3V1)(P̂). Assuming (ii), i.e.G(i V3V2)a
(V2) = a(V3), it follows thati V3V1 ∈ αa

V1
(P̂), i.e.αa

V1
(P̂) is a sieve.

3.2.2. The Case of Subobjects of6

We return to case (i) of Section 2.7. We recall that for any sieve-valued
valuationν, the interval valuation that assigns to each stageV the subset of the
spectrumσ (V) consisting of all functionals that “make certain” all members of
the truth setTν(V), i.e. the interval valuation of Eq. (2.27):

I ν(V) := {κ ∈ σ (V) | κ(P̂) = 1, ∀P̂ ∈ Tν(V)} =
⋂

P̂∈Tν (V)

V(P̂) (3.7)

defines a subobject of6 provided Eq. (2.28) is satisfied:

If V2 ⊆ V1 then infTν(V2) ≥ inf Tν(V1), i.e.s(ν, V2) ≥ s(ν, V1). (3.8)

(Incidentally, this argument does not require thatν be a sieve-valued valuation in
the strong sense of Definition 2.3 (Section 2.5); it works for any assignment, to
each stageV in V and eachP̂ ∈ G(V) := L(V), of a sieve onV .)

To obtain the analogue of Theorem 3.1 for the case of subobjects of6, we note
that condition (i) of Theorem 3.1 says thati V2V1 : V2→ V1 ∈ αV1(P̂) if and only if
s(α, V2) ≤ G(i V2V1)(P̂), i.e. iff G(i V2V1)(P̂) is certain atV2 according toα. So we
expect the corresponding condition, for a subobjectIα of 6, to be thatIα(V2) ⊆
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V2(G(i V2V1)(P̂)) (≡ V1(P̂)|V2 by the isomorphism Eq. (2.11) in Section 2.4). Indeed
we have:

Theorem 3.2. Let α be an assignment to each stage V inV and eachP̂ ∈
G(V) := L(V) of a set of morphismsαV (P̂) ⊆ {i V ′V : V ′ → V} with codomain
V . Let Tα(V) andIα(V) be defined as in Eqs. (2.25) and (2.27) respectively (just
substitutingα for ν). Suppose thatα obeys:

(i) If V2 ⊆ V1 and P̂ ∈ L(V1), then iV2V1 : V2→ V1 ∈ αV1(P̂) iff Iα(V2) ⊆
V1(P̂)|V2;

(ii) the intervalsIα give a “tight” subobject of6 in the sense that they match
up exactly under restriction, i.e.,

If V2 ⊆ V1, then Iα(V2) = Iα(V1)|V2 : not merelyIα(V2) ⊇ Iα(V1)|V2;

(3.9)

Then:

(a) EachαV (P̂) is a sieve;
(b) α obeys FUNC, just as in Eqs. (2.14) and (3.2), i.e.,

αV2

(
G
(
i V2V1

)
(P̂)

) = i ∗V2V1

(
αV1(P̂)

)
(3.10)

(c) α obeys

αV1(P̂) = {i V2V1 : V2→ V1 | Iα(V1)|V2 ⊆ V1(P̂)|V2

}
(3.11)

Proof:

(a): Giveni V2V1 ∈ αV1(P̂), the condition (i) and the monotonicity of taking
restrictions (i.e. ifX andY are sets of functions on a common domain of
which Z is a subset, thenX ⊆ Y impliesX|Z ⊆ Y|Z) imply that for any
V3 ⊆ V2, Iα(V2) |V3 ⊆ V1(P̂) |V3. But (ii) impliesIα(V3) ⊆ Iα(V2) |V3; so
thatIα(V3) ⊆ V1(P̂) |V3 and by (i),i V3V1 ∈ αV1(P̂).

(b): Condition (i) implies thatαV2(G(i V2V1)(P̂)) = {i V3V2 : V3→ V2 | Iα(V3)
⊆ V2(G(i V2V1)(P̂)) |V3}. But the isomorphism ofG and Clo6 (cf. dia-
gram 2.10 and Eq. (2.11)) means thatV2(G(i V2V1)(P̂)) = V1(P̂)|V2; re-
stricting both sides of this equation to anyV3 ⊆ V2, we getV2(G(i V2V1)
(P̂))|V3 = V1(P̂) |V3. On the other hand, condition (i) also implies that
i ∗V2V1

(αV1(P̂)) := {i V3V2 : V3→ V2 | i V2V1 ◦ i V3V2 ∈ αV1(P̂)} = {i V3V2 :
V3→ V2 | Iα(V3) ⊆ V1(P̂)|V3}. (So result (b) depends only on the
condition (i).)

(c): Immediate: apply (ii) i.e. Eq. (3.9) to the condition (i) thatIα(V2) ⊆
V1(P̂)|V2. QED.
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We remark that the analogy with Theorem 3.1 is very close, but we could
equally well have proven Theorem 3.2 first. Indeed, much of Theorem 3.2 can be
stated and proved without mention ofG. More precisely, the coarse-graining map
G(i V2V1)(·), taking projectorŝP ∈ G(V1) to projectors inG(V2), is for the most part
replaced by the mapV1(·)|V2, taking projectorŝP ∈ G(V1) to subsets of6(V2). In
particular, only part (b) needs to mentionG and to make use of the isomorphism
in Section 2.4 betweenG and Clo6.

In particular, the sieve-valued valuations associated with quantum states (for
probability 1, but notr with 0≤ r < 1) obey the conditions of Theorem 3.2.
For we noted in Section 4.4.1 of Hamiltonet al. (2000) that (ii) i.e., Eq. (3.9),
holds for these valuations. Besides, (i) holds for these valuations because of the
isomorphism betweenG and Clo6, specifically Eq. (2.11),V2(G(i V2V1)(P̂)) =
V1(P̂)|V2; as follows. By the definition ofνρ (cf. Section 2.6),i V2V1 : V2→ V1 ∈
ν
ρ

V1
(P̂) iff G(i V2V1)(P̂) ∈ Tρ(V2). On the other hand, condition (i) forνρ is that

Iρ(V2) ⊆ V1(P̂)|V2 ≡ V2(G(i V2V1)(P̂)), i.e. that ifκ ∈ σ (V2) andκ(P̂) = 1,∀P̂ ∈
Tρ(V2), thenκ(G(i V2V1)(P̂)) = 1; which is just thatG(i V2V1)(P̂) ∈ Tρ(V2).

Furthermore, the discussion of the second half of Section 3.2.1 also carries
over mutatis mutandis; (though there is one difference). That is: conditions (i)
and (ii) are again, respectively, natural sufficient conditions for: (a) a sieve-valued
valuation to be determined by an interval-valued valuation that it itself determines;
and (b) an interval valuation to be determined by a sieve-valued valuation that it
itself determines.

First, supposeα is an assignment to each stageV in V and eacĥP ∈ G(V) :=
L(V) of a sieve onV . We can define truth sets as in Eq. (2.25), i.e.,

Tα(V) := {P̂ ∈ L(V) | αV (P̂) = trueV } (3.12)

and intervals as in Eq. (2.27), i.e.,

Iα(V) := {κ ∈ σ (V) | κ(P̂) = 1, ∀P̂ ∈ Tα(V)} (3.13)

Then we define a valuation with sets of morphisms as values, in terms of theIα(V),
by:

αIα
V1

(P̂) := {i V2V1 : V2→ V1|Iα(V2) ⊆ V1(P̂)|V2

}
; (3.14)

and ask: doesαIα
V1

(P̂) = αV1(P̂)? The answer is trivially: “Yes” if and only ifα
obeys condition (i) of Theorem 3.2. (As in Section 3.2.1, we note incidentally
that this argument, including its definition of truth sets and intervals, does not
require that the givenα assign sieves. It is enough, as in Theorem 3.2, thatα

be an assignment to each stageV in V and eachP̂ ∈ G(V) := L(V) of a set of
morphisms with codomainV : the conclusion, thatαIα = α if and only if α obeys
condition (i), is unaffected.)
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Second, supposea is an assignment at each stageV in V of a subseta(V)
of 6(V) := σ (V). (We do not for the moment require thata define a subobject of
6.) Then we define a valuationαa, with sets of morphisms as values, on allP̂ in
eachG(V) := L(V), in terms ofa, as follows:

αa
V1

(P̂) := {i V2V1 : V2→ V1 | a(V2) ⊆ V1(P̂)|V2

}
. (3.15)

As in Section 3.2.1 (after Eq. (3.5)), we ask whether the intervalIα
a
(V), defined

in the usual way (cf. Eqs. (2.27), (3.12), and (3.13)) is equal toa(V). But in
Section 3.2.1, the answer was automatically “Yes”; now it is not. For defining
truth sets and intervals in this way, we get:

P̂ ∈ Tαa
(V) iff a(V) ⊆ V(P̂)|V = V(P̂), (3.16)

so thatκ ∈ σ (V) is in Iα
a
(V) if and only if for all P̂ with a(V) ⊆ V(P̂), we have

κ(P̂) = 1. All elements ofa(V) fulfill this condition so thata(V) ⊆ Iα
a
(V). But

the converse inclusion requires that ifκ 6∈ a(V) then there isQ̂ with a(V) ⊆ V(Q̂)
andκ(Q̂) 6= 1. And in general this will not hold: ifκ is in the closure ofa(V),
butκ 6∈ a(V), then any clopen (so closed) supersetY of a(V) must containκ; and
any suchY is V(Q̂) for someQ̂. To get this converse, and soa(V) = Iα

a
(V), the

natural sufficient condition is that the given setsa(V) should be clopen. (Recall
from Section 2.4 that every clopen subset ofσ (V) corresponds to a projector
whose Gelfand transform onσ (V) is the characteristic function of the subset.)

But under what conditions isαa sieve-valued (i.e.αa
V1

(P̂) is always a sieve)?
In fact, the condition (ii) in Theorem 3.2—i.e. the condition thata defines a “tight”
subobject of6—is a natural sufficient condition for this. For suppose thati V2V1 ∈
αa

V1
(P̂), so thata(V2) ⊆ V1(P̂)|V2, and pick anyi V3V2 : V3→ V2. Since restriction

is monotonic,a(V2)|V3 ⊆ V1(P̂)|V3. Assuming (ii), i.e.a(V2)|V3 = a(V3), it follows
that i V3V1 ∈ αa

V1
(P̂), thusαa

V1
(P̂) is a sieve.

3.3. The Correspondence inO
The discussion in Section 3.2 is quite abstract. So it is illuminating to present

the same ideas in a more concrete setting: namely, the valuations onO associated
with a quantum stateψ ∈ H, or more generally a density matrixρ , which (cf.
Section 2.6, especially Eq. (2.21)) are defined by

νψ (A ∈ 1) := { fO : B̂→ Â | Ê[B ∈ f (1)]ψ = ψ} (3.17)

and

νρ(A ∈ 1) := { fO : B̂→ Â | tr(ρ Ê[B ∈ f (1)]) = 1}. (3.18)

However, as mentioned in Section 3, various measure-theoretic difficulties
about the spectra of operators (and functions of them) arise inO. These centre
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around the fact that if̂B = f (Â) (so that there is a morphismfO : B̂→ Â in O)
then in general, the corresponding spectra (now consisting of elements ofR, not
of linear functionals on operators!) have only a subset inclusion

f (σ (Â)) ⊆ σ ( f (Â)) (3.19)

not necessarily an equality; though of course, ifÂ has a pure discrete spectrum,
then f (σ (Â)) = σ ( f (Â)).

This situation prompts three further remarks:

1. For the role of Eq. (3.19) in defining the spectral presheaf onO, cf.
Section 2 of Isham and Butterfield (1998).

2. As noted in Section 2.1 of Isham and Butterfield (1998), the set of self-
adjoint operators onH that have a pure discrete spectrum is closed under
taking functions of its members, and so forms a base-categoryOd on
which we can define a spectral presheaf and a coarse-graining presheaf in
a manner exactly parallel to the definitions overO.

3. For a more precise statement of the relation off (σ (Â)) andσ ( f (Â)),
cf. Eq. (2.9) of Isham and Butterfield (1998).

To sum up: it will be heuristically helpful to report what the results in
Section 3.2 imply about presheaves overO for those operators for which these
measure-theoretic difficulties donotarise. As just mentioned, this will include all
operators with a pure discrete spectrum; and the rest of this Section can be read as
strictly true for the spectral presheaf and coarse-graining presheaf defined onOd.

We will do this in two stages, in the next two subsections. Both depend
on the following “definition” of what we will call theelementary supportof a
quantum state, relative to a stage (i.e., relative to an operatorÂ in O). We say
“definition” since the infimum of a family of Borel sets is not in general Borel,
so that the definition applies only in special cases, in particular inOd. (And we
say “elementary,” since these supports are, as usual, subsets ofR, and we want
to emphasise the distinction from the rigorously defined supports discussed in
Section 3.2.)

Definition 3.1. The elementary support,s(ψ, Â), of a vector stateψ ∈ H for a
quantity Â, is the smallest set (measure-theoretic niceties apart!) of real numbers
for whichψ prescribes probability 1 of getting a result in the set, on measurement
of the physical quantityA. And similarly for a density matrixρ. More precisely:

s(ψ, Â) := infBorel{1 ⊆ R | Ê[ A ∈ 1]ψ = ψ}.
(3.20)

s(ρ , Â) := infBorel{1 ⊆ R | tr[ρ Ê[ A ∈ 1]] = 1}.
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3.3.1. Characterizing Quantum Valuations With Elementary Supports

Given this definition of supports, we can deduce a characterization of the
sieve-valued valuations onO associated with quantum states as defined in
Eqs. (3.17) and (3.18). This characterization is the analogue of those in
Theorem 3.1, i.e., Eq. (3.3) of part (c), and in Theorem 3.2, i.e., Eq. (3.11); and
this characterization, being more concrete, is heuristically valuable.

For anyÂ,1, and f : 1 ⊆ f −1( f (1)), we haveÊ[ f (A) ∈ f (1)] = Ê[ A ∈
f −1( f (1))], and henceÊ[ A ∈ 1] ≤ Ê[ f (A) ∈ f (1)]. This gives as a sufficient
condition for an arrowfO : B̂→ Â to be inνψ (A ∈ 1), that f (s(ψ, Â)) ⊆ f (1).
For suppose thatf (s(ψ, Â)) ⊆ f (1). ThenÊ[ A ∈ s(ψ, Â)] ≤ Ê[ f (A) ∈ f (s(ψ,
Â))] ≤ Ê[ f (A) ∈ f (1)]. So sinceÊ[ A ∈ s(ψ, Â)]ψ = ψ , we haveÊ[ f (A) ∈
f (1)]ψ = ψ .

This condition, that f (s(ψ, Â)) ⊆ f (1), is also necessary. For since
Ê[ f (A) ∈ f (1)] = Ê[ A ∈ f −1( f (1))], we have that an arrowfO : B̂→ Â is
in νψ (A ∈ 1) if and only if f −1( f (1)) ⊇ s(ψ, Â). But applying f to this last we
get: f ( f −1( f (1))) = f (1) ⊇ f (s(ψ, Â)).

Thus we have the result (strictly inOd, and inO, for thoseÂ, B̂,1 for which
measure-theoretic difficulties do not arise):

νψ (A ∈ 1) = { fO : B̂→ Â : f (1) ⊇ f (s(ψ, Â))}. (3.21)

This argument can be adapted toνρ ands(ρ , Â). We use the fact thatfO :
B̂→ Â ∈ νρ(A ∈ 1) if and only if tr[ρ Ê[ A ∈ f −1( f (1))]] = 1 if and only if
f −1( f (1)) ⊇ s(ρ , Â); which, applying f , implies that f (1) ⊇ f (s(ρ , Â)). So
we get the result (again, strictly inOd; and inO, measure-theoretic difficulties
apart):

νρ(A ∈ 1) = { fO : B̂→ Â : f (1) ⊇ f (s(ρ , Â))}. (3.22)

Each of Eqs. (3.21) and (3.22) is clearly an analogue of part (c) of Theorem
3.1, which was

αV1(P̂) = {i V2V1 : V2→ V1 | G
(
i V2V1

)
(s(α, V1)) ≤ G

(
i V2V1

)
(P̂)

}
, (3.23)

and of part (c) of Theorem 3.2, which was

αV1(P̂) = {i V2V1 : V2→ V1 | Iα(V1)|V2 ⊆ V1(P̂)|V2

}
. (3.24)

In short we see that (i)̂A corresponds toV1; (ii) 1 corresponds toP̂; (iii) f
corresponds to coarse-graining byG(i V2V1) in Theorem 3.1, and by restriction
to V2 in Theorem 3.2; and (iv) elementary supports correspond to the rigorous
supports in Theorem 3.1 and to the intervals in Theorem 3.2.

We note incidentally that the fact thatψ ∈ H is determined by the set of
“certainly true” pairs〈Â,1〉 (i.e. the pairs for whichν(A ∈ 1) = ↓ Â), together
with the fact thatψ itself determinesν = νψ by Eq. (3.17), implies that
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ν = νψ is determined by the set of “certainly true” pairs〈Â,1〉. This “two-step-
determination” argument (going viaψ) shows that for pure quantum statesψ , one
of the sieve-valued valuationsνψ (a sieve-valued valuation that is induced by some
or otherψ according to Eq. (3.17)) is determined by the “certainly true” i.e. trueA

assignments that it makes.

3.3.2. Supports Give Subobjects of6 onO
We recall that assigning to eacĥA ∈ O a subseta(Â) of its spectrumσ (Â)

gives a subobject of6 (rather than the global elements prohibited by the Kochen–
Specker theorem) provided the assignment obeys the “subset” version ofFUNC:
viz.,

f (a(Â)) ⊆ a( f (Â)). (3.25)

In particular, elementary supports, as defined in Definition 3.1, induce subobjects
of 6—i.e. interval valuations obeying Eq. (3.25). For even ifÂ has in part a
continuous spectrum, the subset conditions:

f (s(ψ, Â)) ⊆ s(ψ, f (Â)); f (s(ρ , Â)) ⊆ s(ρ , f (Â)) (3.26)

hold. So each of the interval valuations defined by

aψ (Â) := s(ψ, Â); aρ(Â) := s(ρ , Â) (3.27)

is indeed a subobject of6. If Â has pure discrete spectrum, Eq. (3.26) becomes
an equality, both for a vector state and a density matrix:

f (s(ψ, Â)) = s(ψ, f (Â)); f (s(ρ , Â)) = s(ρ , f (Â)). (3.28)

4. DEFINING SIEVE-VALUED VALUATIONS IN TERMS
OF SUBOBJECTS OFΣ

As we have seen, the correspondence, indeed mutual determination, in
Section 3 between sieve-valued and interval-valued valuations holds for a wider
class of valuations than just those discussed in Sections 2.5–2.7. In particular,
Theorems 3.1 and 3.2 used only the first clause of the definition in Section 2.5 of
a sieve-valued valuation (Definition 2.3), viz. the requirement that a sieve-valued
valuation obeyFUNC. This situation suggests that it would be worth surveying
different ways of defining sieve-valued and interval-valued valuations—and the
properties that ensue from these definitions. In this Section we undertake a part
of such a survey. It will show in particular that the valuations we have consid-
ered are a very natural way to secure the properties listed in the other clauses of
Definition 2.3.
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To be precise: we will focus on the role played in the results of Section 3 by our
having defined generalized valuations (with sets of morphisms as values) in terms
of the partial order relation at each stage. That is, we note that in the discussion of
global elements ofG in Section 3.2.1, the results about such valuations repeatedly
invoked the partial order≤ in G(V) := L(V) (cf. in particular, (i) of Theorem 3.1);
and in the discussion in Section 3.2.2 of subobjects of6, the results repeatedly
invoked subsethood⊆ among subsets of the spectrumσ (V) (cf. (i) of Theorem
3.2). In both cases, the relation is used atV2, the coarser of two stagesV2 ⊆ V1 to
connect a notion “intrinsic” toV2 (i.e.,s(α, V2) andIα(V2) respectively) to a notion
got by coarse-graining fromV1 (i.e.,G(i V2V1)(P̂) andV1(P̂)|V2 = V2(G(i V2V1)(P̂))
respectively).

So we will now ask how the properties of valuations taking sets of morphisms
as values that are defined in terms of interval valuations by using a relationR to
connect a notion intrinsic to a stageV2 to another notion got by coarse-graining
from a finer stageV1, depend upon the choice of the relationR. That is to say, we
will now consider the following schema for defining from a given global element
a of G, a valuation taking sets of morphisms as values, in terms of an arbitrary
binary relationR:

α
a,R
V1

(P̂) := {i V2V1 : V2→ V1 | a(V2) R G
(
i V2V1

)
(P̂)

}
. (4.1)

The analogous general schema starting from an interval valuationa that is a sub-
object of6 is

α
a,R
V1

(P̂) := {i V2V1 : V2→ V1 |a(V2) R V1(P̂)|V2

}
. (4.2)

Similarly, for the case ofO (cf. Section 3.3), the general schema is

α
a,R
Â

(1) := αa,R(A ∈ 1) := { fO : B̂→ Â | a(B̂) R f(1)}. (4.3)

But we will discuss only Eq. (4.1); our results carry overmutatis mutandisto the
cases of Eqs. (4.2) and (4.3).

This leads us to ask what conditions onR in Eq. (4.1) correspond, as either
necessary or sufficient conditions, to various properties of the valuationαa,R?
The following results can be immediately verified. We give them in the same
order as the conditions listed in our original definition of a sieve-valued valuation
(Definition 2.3, in Section 2.5).

(i) αa,R
V1

(P̂) is a sieve if and only ifR is stable under coarse-grainingin the
sense that ifa(V2) R G(i V2V1)(P̂), then for allV3 ⊆ V2, a(V3) R G(i V3V1)
(P̂).

Sincea is assumed to be a global element ofG, so that for allV ′ ⊆
V, a(V ′) = G(i V ′V )a(V), the consequent in this condition becomes

a(V3) = G
(
i V3V2

)
a(V2) R G

(
i V3V1

)
(P̂) = G

(
i V3V2

)
G
(
i V2V1

)
(P̂). (4.4)
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SinceG is monotonic with respect to≤, choosingR to be≤, as we have
done (cf. Eqs. (3.1) and (3.3)) is a very natural way to secure sievehood.

(ii) For any relationR whatsoever,αa,R obeys functional composition in the
form of Eq. (3.2), i.e.,

α
a,R
V2

(
G
(
i V2V1

)
(P̂)

) = i ∗V2V1

(
α

a,R
V1

(P̂)
)
. (4.5)

To see this, note that in the argument of part (b) of Theorem 3.1, any
relationR could be substituted for≤.

(iii) αa,R obeys the null proposition condition, i.e.αa,R
V1

(0̂)= ∅, if and only if
there is noV2 ⊆ V1 with a(V2) R 0̂ (since0̂ coarse-grains tô0). Provided
a always assigns a nonzero projector, this condition is satisfied by our
choice ofR as≤.

(iv) αa,R obeys the monotonicity condition, i.e. if̂P ≤ Q̂ ∈ L(V1) then
α

a,R
V1

(P̂) ≤ αa,R
V1

(Q̂), if and only if R is isotone under coarse-grainingin
the sense that[

P̂ ≤ Q̂ and a(V2) R G
(
i V2V1

)
(P̂)

]⇒ a(V2) R G
(
i V2V1

)
(Q̂). (4.6)

SinceG is monotonic with respect to≤, the natural sufficient condition
for this is that the relationR is stable under taking larger elements on its
left hand side, i.e.,

[ Ŝ≤ T̂ and a(V2) R Ŝ] ⇒ a(V2) R T̂ . (4.7)

Again, the natural choice for satisfying this is thatR is taken to be≤.
(v) αa,R obeys the exclusivity condition, that if̂PQ̂ = 0 andαa,R

V1
(P̂) =

↓V1 = trueV1, thenαa,R
V1

(Q̂) < trueV1 if and only if

If P̂Q̂ = 0 and ∀V2 ⊆ V1, a(V2) R G
(
i V2V1

)
(P̂),

then∃V3 ⊆ V1 such that nota(V3) R G
(
i V3V1

)
(Q̂). (4.8)

Here, the condition in terms ofR is not very different from exclusivity
in the original form; and so seems not very illuminating. But provided
a always assigns a nonzero projector, this condition is satisfied by our
choice ofR as≤. For if P̂Q̂ = 0 and, for allV2 ⊆ V1 we havea(V2) ≤
G(i V2V1)(P̂), thena(V1) ≤ P̂, so that¬a(V1) ≤ Q̂ (sincea(V1) 6= 0̂),
and henceαa,≤

V1
(Q̂) 6= trueV1.

(vi) αa,R obeys the unit proposition condition, thatαa,R
V1

(1̂)= trueV1, if and
only if for all V2 ⊆ V1 we havea(V2) R G(i V2V1)(1̂)= 1̂V2 (since 1̂
coarse-grains tô1). Again, the natural way for satisfying this is to choose
the relationR to be≤.

These results show that there is a natural choice of the relationR, viz.
R := ≤, which is sufficient to yieldall of the properties (i.e. clauses (i)–(v)
of Definition 2.3), provideda always assigns a nonzero projector. And again
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this conclusion reflects the theme of Section 3, viz. the correspondence between
sieve-valued and interval-valued valuations, and in particular the characterization
Eq. (3.3) (part (c) of Theorem 3.1).

Furthermore, analogous results are easily verified for the schemas in Eqs. (4.2)
and (4.3). More precisely: taking the relationR as subsethood,⊆ in these schemas
is sufficient for these properties, provided some “regularity conditions” hold. These
conditions include:

1. The analogue of the proviso above, thata always assigns a nonzero pro-
jector (i.e. thata always assigns a nonempty subset).

2. The requirement thata defines a “tight” subobject of6, in the sense of
Eq. (3.9).

3. For the case ofO, (i.e. schema 4.3) for all bounded Borel functionsf and
all Â, we have the equalityf (σ (Â)) = σ ( f (Â)) (as always occurs if̂A has
pure discrete spectrum), not merelyf (σ (Â)) ⊆ σ ( f (Â)) as in Eq. (3.19).

But we will not go into details of just how these regularity conditions make choos-
ing R as subsethood⊆ sufficient for the various properties (i)–(vi) above, for
the schemas of Eqs. (4.2) and (4.3). But again the conclusion—that takingR as
subsethood in these schemas is sufficient for these properties—reflects the corre-
spondence in Section 3 between sieve-valued and interval-valued valuations; and
in particular the characterizations, Eq. (3.11) (forV: part (c) of Theorem 3.2), and
Eqs. (3.21) and (3.22) (forO).

5. CONCLUSION

In this paper, we have extended our topos-theoretic perspective on the assign-
ment of values to quantities in quantum theory; principally using the base category
V of commutative von Neumann algebras introduced in Hamiltonet al. (2000).
In Section 3, we compared our sieve-valued valuations with interval valuations
based on the notion of supports. This discussion (adding to some results reported
in Section 4 of Hamiltonet al. (2000)) had as its main theme a correspondence
(mutual determination) between certain sieve-valued valuations and corresponding
interval valuations. This correspondence was summed up (forV) in the charac-
terizations given in parts (c) of Theorems 3.1 and 3.2, Eqs. (3.3) and (3.11); and
summed up more heuristically forO, in Eqs. (3.21) and (3.22).

In Section 4, we generalized this discussion: we gave a partial survey of
how in defining sieve-valued valuations in terms of interval valuations, certain
properties of the sieve-valued valuations derive from the properties of the binary
relationR used in the definition. This survey again showed the naturalness of our
previous definitions. For takingR to be the partial order≤ among projectors, or
to be subsethood⊆ among subsets of spectra, was a natural and simple sufficient
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condition for the defined valuations to obey the clauses of our original definition
of sieve-valued valuations (Definition 2.3).
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